• Title/Summary/Keyword: Waste glass sand

Search Result 16, Processing Time 0.02 seconds

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

A Study on the Strength of Mortar Substituted Fine Aggregate by Waste Glass Color (폐유리 색상별 잔골재를 치환한 모르타르의 강도에 관한 연구)

  • Jo, Su Yeon;Kim, Geon U;Shin, Joung Hyeon;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.112-113
    • /
    • 2021
  • Since natural sand is being depleted, research is being conducted to use glass similar to sand as an aggregate. When non-reusable waste glass is crushed and used as fine aggregate, it is known that alkali of cement and silica of glass react to cause an alkali aggregate reaction. The purpose of this study is to provide basic data by studying the strength according to color to use waste glass as fine aggregate. When 10% was replaced, both flexural and compressive strength showed strength values similar to those of Plain. When replaced by 20% and 30%, the 7-day intensity was higher than that of Plain. In addition, colorless glass was found to have the highest strength among glass colors. More research is expected to be needed to become a fine aggregate of waste glass.

  • PDF

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

The Effect of Recycled Glass Sand Usage Conditions on the Mechanical Properties and Alkali-Silica Reaction of Mortar (순환유리 잔골재의 사용 조건이 모르타르의 역학적 특성 및 알칼리-실리카 반응에 미치는 영향)

  • Min-Jae Son;Gyu-Yong Kim;Hyun-Sang Choi;Gyeong-Cheol Choi;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2024
  • In recent years, there has been an increasing amount of waste glass that cannot be recycled and is landfilled among construction and household waste. To address this issue, research has been conducted to recycle waste glass as sand, but conflicting results have emerged depending on the type of waste glass and the manufacturing method of recycled glass sand(RGS). To promote the use of RGS, it is necessary to review its performance under field conditions, such as mass production processes and real scale concrete applications. This study introduces examples of mass production system process for RGS and evaluates the effects of the usage conditions(color, content, particle size) of mass-produced RGS on the mechanical properties and alkali-silica reaction(ASR) of mortar. As a result, the mass production system process of RGS causes microcracks inside the particles, which are the cause of mortar strength reduction and ASR expansion. The number of microcracks is highest in clear RGS. Based on these results, it is proposed that RGS can be used as a replacement for natural sand with a content of less than 25 % or a particle size of less than 0.5 mm.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

A study of the fresh properties of Recycled ready-mixed soil materials (RRMSM)

  • Huang, Wen-Ling;Wang, Her-Yung;Chen, Jheng-Hung
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.787-799
    • /
    • 2016
  • Climate anomalies in recent years, numerous natural disasters caused by landslides and a large amount of entrained sands and stones in Taiwan have created significant disasters and greater difficulties in subsequent reconstruction. How to respond to these problems efficaciously is an important issue. In this study, the sands and stones were doped with recycled materials (waste LCD glass sand, slag powder), and material was mixed for recycled ready-mixed soil. The study is based on security and economic principles, using flowability test to determine the water-binder ratio (W/B=2.4, 2.6, and 2.8), a fixed soil: sand ratio of 6:4 and a soil: sand: glass ratio of 6:2:2 as fine aggregate. Slag (at concentrations of 0%, 20%, and 40%) replaced the cement. The following tests were conducted: flowability, initial setting time, unit weight, drop-weight and compressive strength. The results show that the slump values are 220 -290 mm, the slump flow values are 460 -1030 mm, and the tube flow values are 240-590 mm, all conforming to the objectives of the design. The initial setting times are 945-1695 min. The unit weight deviations are 0.1-0.6%. The three groups of mixtures conform to the specification, being below 7.6 cm in the drop-weight test. In the compressive strength test, the water-binder ratios for 2.4 are optimal ($13.78-17.84kgf/cm^2$). The results show that Recycled ready-mixed soil materials (RRMSM) possesses excellent flowability. The other properties, applied to backfill engineering, can effectively save costs and are conducive to environmental protection.

Feasibility Study on the Synthesis of Wollastonite Using Waste Glass and Sand (폐유리와 모래를 활용한 Wollastonite 합성 예비 실험)

  • Pae, Junil;Kwon, Minkyoung;Moon, Juhyuk
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.23-24
    • /
    • 2022
  • Wollastonite is a promising sustainable cement mineral which directly reacts with carbon dioxide to form calcium carbonate and silica gel. Due to the carbon dioxide reaction, it can be undoubtly one of materials for carbon capture, utilization, and storage. In this study, feasibility study for synthesizing the wolloastonite crystal using sand and waste glass was performed instead of using reactive but expensive silica fume for silica source.

  • PDF

Evaluation of Mechanical Properties and Alkali-Silica Reaction of High Strength Mortar Using Waste Glass Sand (폐유리 잔골재를 치환한 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응 평가)

  • Eu, Ha-Min;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.528-536
    • /
    • 2020
  • In this study, high strength mortar and normal strength mortar using waste glass sand were evaluated. The main parameters studied were mechanical properties, alkali-silica reaction(ASR) and residual mechanical properties after ASR. As a result of this experiment, it was found that the increase in strength of the mortar has a limitation in improving the slip of the waste glass sand(GS), and rather, it causes a larger ASR. However, the possibility of improving the slip of GS was confirmed by the temporary increase of initial residal compressive and flexural strength of the mortar containing GS after the ASR. Therefore, to improve the slip of GS, the additional research is required, such as modification of the surface of GS and the incorporation of a binder which can increase the strength and makes matrix compact.