• Title/Summary/Keyword: Waste gas

Search Result 1,142, Processing Time 0.03 seconds

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements (고온 금속필터 element 표면에 생성된 반점에 대한 평가)

  • Park, Seung-Chul;Hwang, Tae-Won;Moon, Chan-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Metal filter elements were newly introduced to the high temperature filter(HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  • PDF

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Exposure Assessment of PCDD/Fs and Monitoring of Health Effects on Workers and Resident near the Waste Incinerators in Korea (국내 일부 소각장 근로자와 주변지역주민들의 PCDDs/Fs 노출과 건강 영향 평가)

  • Hong, Yun-Chul;Lee, Kwan-Hee;Kwon, Ho-Jang;Jang, Jae-Yeon;Leem, Jong-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2003
  • Objectives : In this study, the exposure status of the hazardous substances from incinerators, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), were studied , and the relationship between the exposure of these hazardous substances and their heath effects on the workers and residents near municipal solid waste (MSW) incinerators and an industrial incinerator investigated. Methods : Between July 2001 and Jure 2002, 13 workers at two MSW incinerators, 16 residents from the area around the two MSW incinerators, 6 residents from the control area, and further 10 residents near an industrial incinerator, estimated to emit higher levels of hazardous substances, were interviewed. Information, including sociodemographic information, personal habits, and work history, detailed gynecologic and other medical history were collected through interviews. Blood samples were also collected from 45 subjects, and analyzed for PCDD/DFs, by high resolution gas chromatography -high resolution mass spectrometry, using the US EPA 1613 method. In addition to the questionnaire survey, urinary concentrations of 8-hydroxydeoxyguanosine (8-OH-dG) and malondialdehyde (MDA) were measured as oxidative injury biomarkers. The urinary concentrations of 8-OH-dG were determined by in vitro ELISA, and the MDA by HPLC, using u adduct with thiobarbituric acid. Results : The PCDD/DFs concentrations in the residents near the industrial incinerator were higher than those in the controls, workers and residents near the MSW incinerators. The average TEQ (Toxic Equivalencies) concentrations of the PCDD/DFs in residents near the industrial incinerator were 53.4pg I-TEQs/g lipid. The estimated daily intakes were within the tolerable daily intake range (1-4 pg I-TEQ/Kg bw/day) suggested by WHO (1997) in only 30% to the people near the industrial incinerator. Animal studies have already shown that even a low body border of PCDD/DFs, such as 10 ng TEQ/kg bw, can cause oxidative damage in laboratory animals. Our study also showed that the same body burden of PCDD/DFs can cause oxidative damage to humans. Conclusions : The exposures to PCDD/DFs and the oxidative stress of residents near the industrial incinerator, were higher than those in the controls, workers and residents near the MSW incinerators. Proper protection strategies against these hazardous chemicals are needed. Because a lower body burden of PCDD/Fs, such as 10ng TEQ/kg bw, can cause oxidative damage, the tolerable daily intake range should be restrictedly limited to 1pg I-TEQ/kg bw/day.

Corrosion Behavior of Superalloys in Hot Molten Salt under Oxidation Atmosphere (고온용융염계 산화분위기에서 초합금의 부식거동)

  • 조수행;임종호;정준호;이원경;오승철;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.285-291
    • /
    • 2004
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of Inconel 718, X-750, Haynes 75 and Haynes 263 alloys in the molten salt of LiCl-Li$_2$O-O$_2$was investigated in the range of temperature; $650^{\circ}C$, time; 24~168h, $Li_2O$; 3wt%, mixed gas; Ar~10%$O_2$. In the molten salt of LiCl-$Li_2O-O_2$, the order corrosion rate was Haynes 263 < Haynes 75 < Inconel X-750 < Inconel 718. Haynes 263 alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of alloys were as fellows: Haynes 75: $Cr_2O_4$, $NiFe_2O_4$, $LiNiO_2$, $Li_2NiFe_2O_4$, Inconel 718; $Cr_2O_4$, $NiFe_2O_4$, Haynes 263; $Li(Ni,Co)O_2$, $NiCr_2O_4$, $LiTiO_2$, Inconel X-750; $Cr_2O_3$, $NiFe_2O_4$,$FeNi_3$, (Al,Nb,Ti)$O_2$. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel 718 and Inconel X-750 showed uniform corrosion behavior.

  • PDF

Analysis on the Generation Characteristics of $^{14}C$ in PHWR and the Adsorption and Desorption Behavior of $^{14}C$ onto ion Exchange Resin (중수로 원전$^{14}C$ 발생 특성 및 이온교환수지에 의한 $^{14}C$$\cdot$착탈 거동 분석)

  • 이상진;양호연;김경덕
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.147-157
    • /
    • 2004
  • The production of $^{14}C$ occurs in the Moderator(MOD), Primary Heat Transport System (PHTS), Annulus Gas System(AGS) and Fuel in the CANDU reactor. Among the four systems, The MOD system is the largest contributor to $^{14}C$ production(approximately 94.8%). $^{14}C$ is distributed of $^{14}CO_2$, $H_2^{14}CO_3$, $H^{14}{CO_3}^-$ and $^{14}{CO_3}^{2-}$ species as a function of the pH of water. Of these species, $H_2^{14}CO_3$ and $H^{14}{CO_3}^-$ form are predominant because the pH of MOD system is > 5. In this paper, adsorption-desorption characteristics of bicarbonate ion (${HCO_3}^-$) by IRN 150 resin was investigated. ${HCO_3}^-$ ion existed in neutral condition(app. pH 7)was reacted with ion exchange resin (IRN-150) and saturated with it. Then $NaNO_3$ and $Na_3PO_4$ solutions selected as extraction materials were used to make an investigation into feasibility of ${HCO_3}^-$ extraction from resin saturated with ${HCO_3}^-$. Desorption of $CO^{2+}$ and $Cs^+$ ion by $Na^+$ ion was not occurred, and desorption of ${HCO_3}^-$ ion by ${NO_3}^-$ and ${PO_4}^{3-}$ was occurred slowly. Also, the status of ion exchange which is used in Wolsong NPPs and generation of spent resin yearly were surveyed.

  • PDF

Screening test of commercial catalysts for direct synthesis of Dimethyl ether from syngas produced using coal and waste (석탄 및 폐기물로부터 생산된 합성가스로부터 Dimethyl ether의 직접합성을 위한 상용촉매 스크린테스트)

  • Kim, Eun-Jin;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.689-692
    • /
    • 2005
  • 2020년까지 전 세계 수송에너지의 수요가 현재의 2배까지 증가할 것으로 예상되면서 석유 자원의 안정적 공급이 어려워지기 이전에 이를 대체할 수 있는 에너지원 개발이 시급하다. 이러한 노력의 일환으로 최근 들어 대두되고 있는 가스화용융 기술은 석탄 폐기물 등으로부터 합성가스를 생산하는 고청정 고효율 기술이다. 여기에서 생산되는 합성가스는 천연가스를 대체하여 전기 및 화학원료를 생산하기 위한 원료로 이용 가능하다. 폐기물로부터 가스화용융기술을 통하여 생산되는 합성가스로부터 DME(dimethyl ether)를 생산할 수 있다. 가스화용융기술로부터 생산되는 합성가스는 자체의 일산화탄소와 수소의 조성비가 DME를 합성하는데 적당하다고 알려져 있다. DME는 에너지원의 다원화와 대기오염 물질의 저감, 지구온난화 대응 등과 아울러 제 4세대 수송 연료로 부각되고 있다. DME를 합성하는 방법은 합성가스로부터 메탄올의 합성 단계를 거친 후 DME를 합성하는 간접법과 단일단계의 반응에서 합성가스로부터 직접적으로 DME를 합성하는 직접법이 있다. 현재는 화학 평형적 측면 경제적 측면에서 이점을 가지고 있는 직접법에 관한 연구가 활발히 이루어지고 있다. DME 직접합성법에서는 메탄올 합성 촉매와 메탄올 탈수촉매의 물리적 혼합에 의한 혼성촉매가 주로 이용되고 있는 것으로 알려져 있다 본 연구에서는 일산화탄소와 수소로 이루어진 합성 가스로부터 직접 DME를 생산할 수 있는 직접 합성 공정에 적용 가능한 고효율 촉매 기술을 개발하기 위해 상용촉매의 스크린 테스트를 수행하였다. 상용촉매로는 sud-chemi사에서 메탄을 합성 촉매와 탈수촉매를 각각 구입하였으며, 이들 촉매를 원하는 조성비로 물리적으로 혼합한 다음 반응온도 ($250-290^{\circ}C$) 압력 (30-50 atm), $H_2$/CO 몰비 (0.5-2.0) 등의 다양한 반응조건 하에서 스크린 테스트를 수행하였다.대장조영영상을 얻을 수 있어 대장암의 위치에 관한 정보를 삼차원적으로 제공하므로 대장암의 성상을 정확히 알 수 있는데 도움을 주었다.요인은 없는 것으로 사료된다. 이 중 2예의 CT에서 선상 혹은망상형의 음영을 보였다. 결론: 유방암 환자의 방사선 치료 후 CT 소견은 방사선 치료의 방법에 따라 폐첨부 혹은 폐의전면 흉막하 부위에 선상 혹은 망상형의 음영으로서 방사선 폐렴 혹은 섬유화 소견이다. CT는 단순 흉부 촬영보다 이상 소견의 발견이 쉽다.이러한 소견은 후에 합병될 수 있는 다른 폐질환의 감별 진단에 도움이 될 것으로 보인다.moembolization via the radial artery approach were involved in this study. All underwent Allen’s test to check ulnar arterial patency. In all cases, we used the radial approach hepatic artery (RHA) catheter designed by ourselves, evaluating t\ulcorner selec\ulcorneron ability of the hepatic artery using an RHA cathter, the number of punctures, the procedure time, and compression time at the puncture site as well as complications occurring during and after the procedure. Results: Except for three in which puncture failure, brachial artery variation or hepatic artery variation occurred, all procedures were successful. The mean number of punctures was 3.5, and the

  • PDF