• 제목/요약/키워드: Waste gas

검색결과 1,145건 처리시간 0.029초

토양 Bio-Filter를 이용한 질소산화물 제거특성 (Removal Characteristics of NOx Using a Soil-Biofilter)

  • 조기철;고병익;이내현;조일형
    • 한국환경과학회지
    • /
    • 제15권2호
    • /
    • pp.133-139
    • /
    • 2006
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over $60\%\;and\;48\%$ of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of $423\~451$ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.

Biofilter를 이용한 폐가스중의 styrene 제거

  • 강염석;황재웅;장석진;박성훈
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.394-397
    • /
    • 2000
  • Styrene을 제거하기 위한 biofilter가 연구되었다. 운전 초기에 활성슬러지를 접종함으로써 start-up 기간을 24시간으로 줄일 수 있었다. 운전중 질소원 고갈 현상이 발생하였고 첨가된 ammonium sulfate양에 따라 제거된 styrene의 양을 정량적으로 구하여 이것을 biofilter의 장기운전에 이용할 수 있었다. Styrene의 maximum elimination $capacity(EC_{max})$와 critical elimination $capacity(EC_{cr})$는 각각 4.8kg $C\;/m^3{cdot}day$, 1.248kg $C\;/m^3{cdot}day$이었으며 styrene 농도 400ppmv까지를 분해하는데 EBRT 1min으로 제거율 95% 이상을 달성할 수 있었다.

  • PDF

광촉매(TiO2)와 UV의 광학반응을 이용한 질소산화물(NOx) 제거특성 (The Removal Properties of NOx with the Photocatalystic (TiO2)and UV Optical Science Reactions)

  • 이관호;박우진
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3578-3582
    • /
    • 2010
  • 본 대도시지역에서 자동차 배기가스에 의한 NOx(질소산화물) 오염은 심각하다. 현재 일부 선진국에서는 도로포장재, 도로측벽, 차음벽등에 광촉매($TiO_2$)를 포함하는 재료를 사용함으로써 대기정화 및 오염방지에 상당한 효과를 거두고 있다. 본 논문에서는 밀폐식 질소산화물(NOx)제거장치 및 아스팔트 시편을 제작하였고, 분말 광촉매와 액상 광촉매를 도포한 후 광촉매와 UV와의 광학반응을 이용해 도로표면에 직접적으로 영향을 미치는 자동차 배기가스의 NOx 정화성능을 분석하였다. 분말 및 액상형 광촉매 이용시 질소산화물 저감이 가능함을 확인하였다.

무성방전 플라즈마 전극구조에 대한 질소산화물 제거효율 연구 (A Study on NOx Removal Efficiency Depending on Electrode Configurations of Silent Discharges)

  • Hyung-Taek Kim;Young-Sik Chung;Myung-Whan Whang;Elena. A. Filimonova
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.112-117
    • /
    • 2002
  • 무성 (유전체 장벽)방전기구의 질소산화물(NOx)제거효율에 대한 화학 반응역학의 전산모사 및 실험적 특성이 비교 조사되었다. 방전 전극구조에 따른 여러 종류의 유전체 장벽 방전기구가 구현되었으며 응용 방전환경 별 질소산화물(NOx)제거특성이 이론적, 실험적으로 고찰되었다. 전산모사 모델링은 유해 배가스에 대한 플라즈마 응용기구의 수학적 근접모델을 기초로 하였고 각 방전광(스트리머) 채널의 주 활성입자 생성에 의한 화학반응 종들의 비균일, 비평형 분포특성을 고려하였다. 모델링 전산모사로 얻어진 질소산화물(NOx) 제거효율은 관찰 실험특성과 오차 허용범위 내의 일치성을 나타내었다.

PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구 (A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor)

  • 최영익
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구 (Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode)

  • 정기철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF

국내 바이오메탄의 차량 연료화 타당성 연구 (Study on Feasibility Biomethane as a Transport Fuel in Korea)

  • 김재곤;이돈민;박천규;임의순;정충섭;김기동;오영삼
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.174.1-174.1
    • /
    • 2011
  • Biogas production and utilisation is an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy services such as heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded, that is, mainly the removal of carbon dioxide to increase the methane content, up to more than 95% in some cases, similar to the composition of fossil-based natural gas. Biogas fuelled vehicles can reduce $CO_2$ emission by between 75% and 200% compared with fossil fuels. Biomethane development is largely driven by national initiative and predominately by concerns for national air pollution and waste management. Recently, biogas projects for vehicle fuels by some companies are ongoing and Korea government also announced investment to develop biogas as a transport fuel. Therefore, the aim of this study is to examine the feasibility of biomethane as a transport fuel in Korea. In this study, we investigated quality characteristics, quality standard and upgrading technology to use vehicle fuel of transport sector in Korea.

  • PDF

CONTAMINANT LEACHABILITY FROM UTILIZED WASTES IN GEOSYSTEMS

  • Inyang Hilary I.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 INTERNATIONAL SYMPOSIUM ON SOIL & GROUNDWATER ENVIRONMENT
    • /
    • pp.5-21
    • /
    • 2005
  • Urbanization rates of population range from about 1% in the developed countries to about 4% in developing countries. For a global population that may reach 10 billion within the next 40 years, pressure has arisen for an increase in the large-scale use of wastes and byproducts in construction. Ironically, most of the wastes that need to be recycled are generated in large cities where the need for constructed facilities to serve large population is high. Waste and recycled materials (WRM) that are used in construction are required to satisfy material strength, durability and contaminant teachability requirements. These materials exhibit a wide variety of characteristics owing to the diversity of industrial processes through which they are produced. Several laboratory-based investigations have been conducted to assess the pollution potential and load bearing capacity of materials such as petroleum-contaminated soils, coal combustion ash, flue-gas desulphurization gypsum and foundry sand. For full-scale systems, although environmental pollution potential and structural integrity of constructed facilities that incorporate WRM are interrelated, comprehensive schemes have not been developed for integrated assessment of the relevant field-scale performance factors. In this presentation, a framework for such an assessment is proposed and presented in the form of a flowchart. The proposed scheme enables economic, environmental, worker safety and engineering factors to be addressed in a number of sequential steps. Quantitative methods and test protocols that have been developed can be incorporated into the proposed scheme for assessing the feasibility of using WRM as partial or full substitutes for earthen highway materials in the field.

  • PDF

Isolation of a Pseudomonas sp. Capable of Utilizing 4-Nonylphenol in the Presence of Phenol

  • Chakraborty Joydeep;Dutta Tapan K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1740-1746
    • /
    • 2006
  • Enrichment techniques led to the isolation of a Pseudomonas sp. strain P2 from municipal waste-contaminated soil sample, which could utilize different isomers of a commercial mixture of 4-nonylphenol when grown in the presence of phenol. The isolate was identified as Pseudomonas sp., based on the morphological, nutritional, and biochemical characteristics and 16S rDNA sequence analysis. The ${\beta}$-ketoadipate pathway was found to be involved in the degradation of phenol by Pseudomonas sp. strain P2. Gas chromatography-mass spectrometric analysis of the culture media indicated degradation of various major isomers of 4-nonylphenol in the range of 29-50%. However, the selected ion monitoring mode of analysis of biodegraded products of 4-nonylphenol indicated the absence of any aromatic compounds other than those of the isomers of 4-nonylphenol. Moreover, Pseudomonas sp. strain P2 was incapable of utilizing various alkanes individually as sole carbon source, whereas the degradation of 4-nonylphenol was observed only when the test organism was induced with phenol, suggesting that the degradation of 4-nonylphenol was possibly initiated from the phenolic moiety of the molecule, but not from the alkyl side-chain.

미곡종합처리장 발생 왕겨폐기물의 소각처리 및 연소열의 활용에 관한 연구 (Study on the Incinerating Treatment of Rice Hull Produced by RPC and Its Heat Utilization)

  • 진영덕;장동일;장동순;김만수;장홍희
    • Journal of Biosystems Engineering
    • /
    • 제20권3호
    • /
    • pp.250-261
    • /
    • 1995
  • This study has been performed to develop an agricultural waste incinerator to combust the rice hull originated from RPC with the typical disposal treatment capacity of 30kg/h and to test performance of the developed incinerator. Experimental results are summarized as following. 1. The optimum feed rate of rice hull of the incinerator is 30kg/h with air ratio of 1.5. 2. The contents of $SO_2$ in flue gas is maximum 18ppm(when rice hull feed rate was 20kg/h and air ratio of 1.5), minimum 7ppm(when rice hull feed rate was 30kg/h and air ratio of 1.5) and average 11ppm. So there is no environmental pollution problem for the incinerating treatment of rice hull of the RPC. 3. The temperature of water of heat exchanger are $53^{circ} C$ and $62^{circ} C$ with water flow rate $3{ell}/min$ and $1.5{ell}/min$ at the optimum combustion condition, respectively. 4. According to theoretical energy calculation, the energy from rice hull combustion may be amounted as much as 80%~190% of energy supplied by kerosene required by RPC.

  • PDF