• 제목/요약/키워드: Waste gas

검색결과 1,141건 처리시간 0.025초

Emission Characteristics of Mercury and Heavy Metals from Coal and Waste Fuels (석탄과 폐기물 연료의 수은 및 중금속 배출 특성)

  • Ahmad, Tanveer;Park, Min;Keel, Sangin;Yun, Jinhan;Park, Jeong Min;Lee, Sang-Sup.
    • Resources Recycling
    • /
    • 제26권2호
    • /
    • pp.33-38
    • /
    • 2017
  • Waste can be utilized as secondary or alternative fuel. Solid recovered fuel (SRF) and dried sewage sludge were combusted to investigate heavy metal emissions from their combusiton in this study. Content of copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), lead (Pb), arsenic (As) and mercury (Hg) of coal, SRF and dried sewage sludge were determined, respectively. Concentrations of these heavy metals in the combustion flue gas were also determined. As a result, emissions of gas-phase Cu, Cr, Cd, Ni, Zn, Pb and As compounds were found to be little. However, a significant amount of gas-phase Hg was emitted from combustion of coal, SRF and dried sewage sludge. While SRF showed a high mercury oxidation percentage in its combustion flue gas, dried sewage sludge showed a high level of gaseous mercury emission.

A rapid separation of Cs, Sr and Ba using gas pressurized extraction chromatography with inductively coupled plasma-mass spectrometry

  • Sojin Jeong;Jihye Kim;Hanul Cho;Hwakyeung Jeong;Byungman Kang;Sang Ho Lim
    • Analytical Science and Technology
    • /
    • 제37권2호
    • /
    • pp.123-129
    • /
    • 2024
  • We present a rapid method for the determination of Cs, Sr, and Ba, heat generators found in highly active liquid wastes, by gas-pressurized extraction chromatography (GPEC) using a column containing a cation-exchange resin. GPEC is a microscale column chromatographic technique that uses a constant flow rate of solvent (0.07 mL/min) with pressurized nitrogen gas supplied through a valve. In particular, because this method uses a small sample volume (a few hundred microliters), it produces less chemical waste and allows for faster separation compared to traditional column chromatography. In this study, we evaluated the separation of Cs, Sr, and Ba using GPEC. The eluate from the column (GPEC or conventional column chromatography) was quantitatively analyzed using inductively coupled plasma-mass spectrometry to measure the column recovery and precision. The column reproducibility of the proposed GPEC system (RSDs of recoveries) ranged from 2.7 to 4.1 %, and the column recoveries for the three elements ranged from 72 to 98% when aqueous HCl was used as the eluent. The GPEC results are slightly different in efficiency and separation resolution compared to those of conventional column chromatography because of the differences in the eluent flow rate as well as the internal diameter and length of the column. However, the two methods had similar recoveries for Cs and Sr, and the precision of GPEC was improved by two-fold. Remarkably, the solvent volume required for GPEC analysis was five times lower than that of the conventional method, and the total analysis time was 11 times shorter.

A Study on the Characteristics of Waste Heat from the Industrial Complexes for Residential and Commercial Sectors (가정.상업부문 이용을 위한 산업체 폐열특성 연구)

  • 최영찬;박태준;홍재창;조선영
    • Journal of Energy Engineering
    • /
    • 제8권2호
    • /
    • pp.242-247
    • /
    • 1999
  • The characteristics of waste heat effluents from 11 industrial complexes of 7 areas were analyzed to investigate the possibility of waste heat recovery of huge amount of waste heat producing from various industrial complexes. This study presents a part of the research work for the industrial waste heat for development of energy integrated network system in broad city area, which will utilize industrial waste heat for residential and commercial areas, where they are located at some distances from the complexes. The amount of waste heat from the investigated complexes was detected as 148,913 TOE/year. However, It was analyzed 83% of the waste heat was analyzed the temperature range from 0$^{\circ}C$ to 200$^{\circ}C$. Also, it was evaluated that 82% of waste heat was exhausted by flue gases. Especially, the characteristics of waste heat for the areas where most heat concentrated, such as Tae-gu industrial complex, Ul-san petrochemitry complex, Yio-chun petrochemistry complex, and Chun-ju industrial complex were investigated more precisely. Total amount of waste heat discharged from these four areas were analyzed 114,402 TOE/year, which was occupied as 77% of the total waste heat for the studied areas, and 87% of the waste heat from the industries was exhausted by flue gaseous phase and temperature range was from 0$^{\circ}C$ to 200$^{\circ}C$ 18.1 million TOE/year waste heat was released from the fossil fuel power plants, however 95% of waste heat was analyzed as cooling water from surface condensers at power plants. The temperature range was measured from 27$^{\circ}C$ to 34$^{\circ}C$, which are unable to utilize due to its low temperature. Otherwise, 5% (894,800 TOE/year) waste heat released from power plants were observed as flue gas, which temperature ranged from 90$^{\circ}C$ to 170$^{\circ}C$.

  • PDF

Performance Analysis on the Ejector System in Flue-gas Discharge Channel of Marine Incinerator (소각기의 배기가스 유로에 이젝터를 적용한 시스템의 성능 분석)

  • Yun, Sang-Kook;Chang, Ho-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.773-778
    • /
    • 2011
  • The International Maritime Organization(IMO) could try to adopt more severe amendment to prevent any air pollution from various waste materials by marine incinerator. This study is to analyse the performance improvement through Ansys CFD about new invented system which has three flue-gas discharge channels and sub-ejector installed in the dischage channel in order to evacuate flue-gas well from the combustion chamber. The results showed that the discharge temperature of flue-gas was below the regulated value of IMO by the multi-channels, and the sub-ejector system installed in the discharge channel was highly effective one to improve the flue-gas discharge ability.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • 제15권1호
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant (원자력 이용 고체산화물 고온전기분해 수소 및 합성가스 생산시스템의 열역학적 효율 분석 연구)

  • Yoon, Duk-Joo;Koh, Jae-Hwa
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제20권5호
    • /
    • pp.416-423
    • /
    • 2009
  • High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.

Development of Vertical Type Flammable Gas Generator for Food Waste (수직형 음식물류폐기물 가연성 가스 발생장치 개발)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.93-96
    • /
    • 2009
  • 논문에서는 음식물류폐기물을 건조 및 탄화시켜 감량화하는 과정에 필요한 수직형 음식물류폐기물 가연성 가스발생장치에 관한 것을 보고하였다. 수직형은 열효율이 좋고 수평공간을 작게 차지하여 토지의 효용을 높이고 구조가 상대적으로 단순하여 제작비를 줄일 수 있다.

  • PDF