• 제목/요약/키워드: Waste cooking oil

검색결과 39건 처리시간 0.027초

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

폐식용유 기반 도포제의 도포시기에 따른 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향 (Effect of Spreading Time of Waste Cooking Oil on Carbonation and Resistance to Chloride Penetration of High Volume Mineral Admixture Concrete)

  • 김상섭;박준희;정상운;이명호;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2014
  • As a previous research, improved durability of concrete by filling capillary pores with waste cooking oil was suggested as a method of controlling carbonation of the concrete replaced high volume of SCMs. on the other hand, the emulsified refined waste cooking oil for better mixing performance had a drawback of reducing air content related with decreasing freeze-thawing resistance. As a solution of this problem, surface applying method was suggested instead of adding in mixing process, and in this research, the performance regarding concrete durability are evaluated comparing emulsified refined cooking oil with water-repelling agent.

  • PDF

Biomass Gasification 공정에서 발생하는 Tar 제거연구 (Removal of Tar from Biomass Gasification Process)

  • 김주회;조영민;김종수;김상범
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.552-561
    • /
    • 2018
  • 화석연료의 고갈과 환경문제를 대응하기 위한 대체에너지 중 재생가능하고 탄소중립(Carbon-neutral)자원인 바이오매스 (Biomass)를 연료로 이용하는 연구가 진행되고 있다. 바이오매스를 사용하는 대부분의 에너지 생산 시스템은 열화학전환방법이 대표적이다. 이 가운데 가스화 기술을 이용해 합성가스 (syngas)를 생산해 보일러나 엔진 등에 적용하여 열과 전기를 생산한다. 하지만 합성가스 (syngas)를 생산하는 과정에서 타르 (tar)가 발생되며 낮은 온도에서 응축되기 때문에 배관 및 엔진 등에 막힘 현상을 일으켜 공정 효율을 감소시키는 문제를 야기한다. 타르를 제거하기 위해 대부분의 가스화 공정에서 물을 이용한 wet scrubber를 사용하고 있는데 효율이 낮은 문제점이 있다. 이에 본 연구에서는 물과 oily material (soybean oil, waste cooking oil, mineral oil)을 이용하여 제거효율이 높은 순으로 나타내자면 Soybean oil>Waste Cooking Oil>Mineral oil>Water 순서로 나타났고 제거효율은 각각 약 97%, 약 70%, 약 63%, 약 30%의 효율을 보여주었으며 식물성 오일 종류인 soybean oil을 사용하였을 때 타르 제거 효율이 가장 높았다.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성 (Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제19권10호
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

폐식용유 바이오디젤을 이용한 압축착화엔진의 저부하 영역에서 연료의 분사 압력과 분사 시기가 연소 및 배기특성에 미치는 영향 (Effect of Fuel Injection Pressure and Timing on the Combustion and Emission Characteristics in a Compression Ignition Engine under Low Load Condition Fueled with Waste Cooking Oil Biodiesel)

  • 황준식;정용진;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.313-316
    • /
    • 2012
  • In this study, the combustion and emission characteristics of waste cooking oil biodiesel was investigated. The fuel was injected from 5 CAD (Crank angle degree) ATDC (After top dead center) to -60 CAD ATDC by 5 CAD with 800 bar and 1600 bar injection pressure. Generally, the hydrocarbon, carbon monoxide and smoke emissions from biodiesel fuel were lower than the emission levels of diesel fuel. However, the emission characteristic of biodiesel got worse than diesel when the fuel was injected earlier than -30 CAD ATDC. $NO_x$ emission from biodeisel was higher than diesel fuel in all experimental conditions.

  • PDF

폐식용유 바이오디젤 연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil)

  • 안상연;김웅일;이창식
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구 (Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine)

  • 조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.381-386
    • /
    • 2015
  • 최근에 환경오염 문제와 대체에너지 문제에 많은 관심을 가지고 있다. 디젤기관은 세계적으로 연료의 경제성 때문에 사용이 증가할 것이다. 그러므로 선박용기관의 대기오염 문제도 여러 분야에서 큰 관심사가 되고 있다. 화석연료로 부터 배출되는 유해 배기가스를 줄이기 위하여 대체연료기술이 개발되고 있다. 이러한 신재생에너지의 바이오디젤연료는 기존 디젤연료를 대체할 친환경 에너지로 각광을 받고 있으며, 일정한 비율로 디젤연료와 혼합하면 기존 디젤기관에 개조 없이 사용가능하다. 본 연구에서 바이오디젤연료가 선박디젤기관의 연소특성에 미치는 영향을 분석하기 위하여 폐식용유로부터 제조된 바이오디젤유를 엔진에 적용하여 실험을 수행하였다. 폐식용 성분에는 세탄가와 점도가 높은 성분이 있고, 탄소함유량이 적으면서 산소함유량이 잔존하고 있다. 연구 결과 연료소비율은 증가하고, 압력, 압력상승율 및 열발생율은 감소하였다.

선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구 (A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine)

  • 조상곤
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.