• Title/Summary/Keyword: Waste catalyst recycling technology

Search Result 15, Processing Time 0.023 seconds

Physicochemical Characteristics of Waste Catalyst and Their In-Process Products from Recycling (폐촉매 및 재활용 중간생성물의 물리화학적 특성 평가)

  • Park, Joon-Seok;Jeun, Byung-Do;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.150-158
    • /
    • 2011
  • This research was conducted to estimate the physicochemical characteristics of waste catalyst and its in-process product from recycling and to suggest fundamental data for religious systems such as quality standards. Mo and V contents were increased from the waste catalyst to calcinated material and oxidized material. In the results of a heavy metals leaching test, Pb was not detected in any catalyst, calcinated and oxidized materials. Cu was not detected in the catalyst. However, it was detected in ${\leq}$1.16 mg/l for calcinated material and in 1.34~13.73 mg/l for $MoO_3$ oxidezed material. Concentrations in recycling in-process products (calcinated and oxidized materials) were higher than those of waste catalyst. Oil content of catalyst waste ranged from 0.01-14.03 wt%. Oil contents of calcinated and oxidized materials were greatly decreased compared to the catalyst waste. Carbon and sulfur contents as chemical poisoning material of catalyst waste ranged from 0.33-76.08 wt% and 5.00-22.00 wt%, respectively. The carbon contents of calcinated and oxidized materials showed below 20 wt%. The sulfur content showed below 8wt% for calcinated material and below 0.22 wt% for oxidized material.

Environmental analysis on Waste Catalyst Recycling Technology using Life Cycle Assessment (전과정평가를 통한 폐촉매 재활용 기술의 환경성 분석)

  • Ahn, Joong Woo;Pak, Jong-Jin
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.64-73
    • /
    • 2018
  • This study aims to analysis the environmental impact on waste catalyst recycling technology using entire life cycle assessment. Environmental impacts consist of the five categories of impacts: global warming, resource depletion, acidification, eutrophication, and photochemical oxide production. The waste catalyst recycling presently have a GWP 3.53 ton $CO_2$ equivalent/ton, a ADP 0.017 ton Sb equivalent/ton, a AP 0.051 $SO_2$ equivalent/ton, a EP 0.0092 $PO{_4}^{3-}$ equivalent/ton, a 0.0019 ton $C_2H_4$ equivalent/ton. The smelting reduction process is the greatest contributor to all categories of environmental impacts in waste catalyst recycling. Electricity used in the smelting reduction process is the major contributor of all impact categories.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

A Study of the Research Trends and the Material flow on the Unrecycled Materials in Korea - The Current Situation of Recycling Technology for Waste Resources in Korea(2) - (국내(國內) 미이용자원(未利用資源)을 위한 회수(回收) 연구동향(硏究動向) 및 물질(物質)흐름 - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(2) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.63-76
    • /
    • 2007
  • Typical examples as unrecycled materials in Korea were Zinc from the electric arc furnace dust (EAF Dust), and Moiybdenium and Vanadium from the desulfurizing spent catalyst of petrochemical industries. In the otherwise, though recovery of valuable metals from the waste electronic scrap such as printed circuit boards (PCBs) and platinum group metals (PGM) from the waste automobile catalyst have been interesting issues, it is difficult to collect the exact informations or statistics on their material flow system. In this article, The current domestic research trends for unrecycled or less recycled materials have been reviewed, and material flow and recycling technologies on the desulfurizing spent catalyst were surveyed.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

Removal of Impurities by Magnetic Separation from Waste Fluidized Cracking Catalyst for Its Reuse (폐FCC 촉매의 재활용 과정에서 자력 선별법에 의한 불순물 제거 연구)

  • Ban Bong-Chan;Lee Jin-Suk;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 2003
  • Presently, the reuse of waste FCC catalysts, which generated from the refining process of crack oil, after the removal of con-taminated metallic impurities have not been attempted domestically yet because the separation technology f3r the impurities from waste catalysts has not been established. As a basic study far the reusable portion from the waste FCC catalysts and treatment of metallic impurities are assured, there will be invoked an significant contribution not only in the recycling of abandoned wastes up to date but also in the treatment efficiency of wastes and extraction of economical benefits from them. The magnetic separation of impurities such as Fe, Ni, and V, from waste FCC catalyst has been attempted with or without its pre-oxidation at high temperature for the purpose of its reuse. The results showed that the separability of impurities by magnetic force was high far non-preoxidized catalysts compared with preoxidized ones, and employment of screen-type matrix showed a higher separation efficiency than ball-type matrix. The separability increased with the strength of magnetic field, and the method of ball matrix has separation efficiency of maximum 51.10%. The amount of metallic impurities was in the decreasing order of V, Ni, and Fe depending upon ICP analysis.

Depolymerization of Waste Polyurethane from Automotive Seats (자동차 시트용 폐폴리우레탄의 해중합)

  • Min, Sung-Jin;Kong, Seung-Dae;Yoon, Cheol-Hun;Kang, An-Soo;Eom, Jae-Yeol;Shin, Pan-Woo;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF

Properties of artificial aggregates of coal bottom ash-dredged soil system added with waste glass (폐유리가 첨가된 석탄바닥재-준설토 계 인공골재의 특성)

  • Jo, Sinae;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.146-151
    • /
    • 2013
  • In this study, the effect of addition of waste glassy slag produced from recycling of spent catalyst (denoted as waste glass hereafter) on the physical properties of artificial aggregates made of coal bottom ash and dredged soil (7 : 3 by weight base) was evaluated. Especially, the bloating behavior of artificial aggregates was analyzed by performing the relation study between the apparent density, water absorption and microstructure. The apparent density of artificial aggregates increased slightly with sintering temperature at $1050{\sim}1150^{\circ}C$, but decreased above $1150^{\circ}C$ showing bloating phenomenon. The bloating behavior of artificial aggregates was decreased so the apparent density increased with amount of waste glass added. Also, the water absorption of artificial aggregates decreased with sintering temperature. Above $1200^{\circ}C$, big fissure and much liquid were formed at the surface of artificial aggregates and these phenomena could be suppressed by increasing amount of waste glass added. The artificial aggregates fabricated in this study had an apparent density of 1.1~1.6 and water absorption of 8~22 % which meet KS requirements for the artificial lightweight aggregates.