• Title/Summary/Keyword: Waste bottle glass

Search Result 11, Processing Time 0.026 seconds

Development of Sharpness Measuring Method for Glass Aggregate Particle made from Waste Glass Bottle

  • Sano, Shigeru;Yamada, Mari
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.76-79
    • /
    • 2001
  • In Japan in of today, there is no aspect in which the quantity of waste glass bottle discharged from ordinary homes decreases. Moreover, the kind of shape and color of the waste glass bottles are increasing little by little. In the recycling of the glass bottle, it becomes a problem that many kind of the color is abounding. It is possible to use the transparent glass bottle as raw material of the glassware. Since the reproduction of the color is difficult, the colored glass bottle is not possible to use as a raw material. Therefore, the processing of these glass bottles entirely depends on the reclamation. In Japan, the security of the new reclaimed land is very difficult for the reason of the environmental damage. Moreover, the life expectancy in many reclaimed lands is anticipated with within two years. Therefore, the development of the processing method of glass bottle other than reclamation becomes a rapid problem. At present it is examined that it is used of an aggregate of the colored pavement, as one of the application methods of colored glass bottle. The particle size of produced glass aggregate is also 5mm or less, because the thickness is 5mm or less on almost glass bottles. And almost glass particles have the sharp tip. The application as the aggregate is limited for this sharpness of the particle. This study was carried out for the purpose of the establishment of sharpness measuring method of the glass aggregate particle. It is possible that the injury degree to human in the handling is known, if showing the sharpness of the aggregate particle at the objective numerical value is possible. And the application of the glass aggregate is spread. In this research, the balloon fracture method was used for the sharpness measurement of the glass particle. This method is based on the completely new idea, and it is possible to express completely the possibility of injury to the human. It is reported with the detailed result in full paper, because this study is continuous in order to get the JIS which is industrial standard of Japan.

  • PDF

Physical and Chemical Properties of Waste Glass as Feed Materials for the Production of Foamed Glass (발포유리 원료로서 폐 유리의 물리 화학적 특성)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2005
  • Physical and chemical properties of waste glass, such as bottle glass, plate glass, and LCD glass were investigated to test the feasibility of starting materials for the production of high quality foamed glass for insulating grade construction material without pre-treatments such as cleaning, and waste removals. For this purpose, chemical analysis, thermal analysis, crystalline analysis, and rheological analysis including viscosity were proceeded and the preparation of foamed glass under the qualitative conditions obtained from these various analysis was also attempted. Overall results of various analysis and investigations for these waste glass showed that waste bottle glass and plate glass have high possivility of use as feed materials for the production of foamed glass.

Some Strategies to Improve Recycling of Glass Bottles (유리용기의 재활용 증진을 위한 제도 개선 방안)

  • Chung, Jae-Chun;Chung, Won-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.83-98
    • /
    • 1996
  • Recently, signigicant interest is given to the recycling of glass bottles. This is because the importance of glass bottle recycling is growing in terms of resource conservation and waste minimization. In this paper, authors analyzed the present situation and problems in glass bottle recycling, summarized the recycling activity in foreign countries and suggested legal and institutional strategies based upon citizen's attitude survey to improve glass bottle recycling activity

  • PDF

Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment (수열처리에 의한 폐병유리의 다공질 재료화)

  • Lim, Dong-Kyu;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.275-281
    • /
    • 2009
  • Porous materials were manufactured by hydrothermal treatment of waste bottle glass without foam agent. Factorial design was applied to analyze data by statistical methods and deal with the important factors for a process. The largest effect for porosity was for temperature of hydrothermal treatment. Amount of water and temperature-water interaction appeared to have little effect. The particle size of raw material was also identified as a major factor by one-way ANOVA and the porosity decreased as the size increased. The sintering temperature was not statistically significant for the porosity but was significant for the pore size. The porous material had compressive strength and thermal conductivity comparing with those of ALC (autoclaved lightweight concrete), although it has higher porosity than for ALC.

Production of Foamed Glass by Using Hydrolysis of Waste Glass (I) - Hydrolysis of Waste Glass - (폐 유리의 가수 분해반응에 의한 발포유리의 제조(I) - 폐유리의 가수분해 반응 -)

  • Lee, Chul-Tae;Lee, Hong-Gil
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.519-526
    • /
    • 2005
  • Hydrolysis of soda-lime waste glass was investigated to test the feasibility for use of waste glass as feed material in the production of foamed glass. The soda-lime glass, such as plate glass and various bottle glasses, was effectively hydrolyzed by steam and water under high pressure. The proper condition for the hydrolysis was found to be reaction temperature of $250^{\circ}C$ and reaction time of 2 h. Under this condition, the water content of hydrated glass through hydrolysis was 7.85~10.04%, allowing successful foaming process for production of foamed glass. Using Na as the modifying agent of glass was effective in the hydrolysis by water. The highest water content of hydrated glass was obtained when weight ratio of NaOH to the glass was 0.04.

Environmental Impact Assessment of Beverage Containers (음료 포장용기의 환경성 평가)

  • Seo, Yong-Chil;Chung, Jae-Chun;Shim, Sang-Guel;Kwon, Dong-Myung
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.88-95
    • /
    • 1997
  • Energy required, air emission, and solid waste generation are calculated with available foreign data ad domestic status using Life Cycle Analysis in order to compare the environmental impact of beverage containers such as PET bottle, aluminum can, glass bottle, and paper pack. Glass bottles are found to be the worst acceptability when considering only recycling rate of glass cullet, however it becomme the best when the refill(reuse) rate of glass bottles is accounted into. To assess tile current and future environmental impact of beverage containers, energy required, air emission, solid waste generation of current data and recycling goals are compared. As a result of the study, recycling of each containers and the reuse of glass bottles must be increased by governmental enforcement to reduce the environmental impacts by beverage containers. Further study on this subject using detailed LCA(life cycle assessment) data should be implemented for the exact environmental and economic assessment.

  • PDF

Comminution Characteristics for Recycling Waste Glass Bottle (폐유리병 재활용을 위한 파분쇄 특성 연구)

  • Lee, Han Sol;Lee, Hoon
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.28-36
    • /
    • 2020
  • To enhance the recycling rate of wasted glass bottles toward recycled aggregates, the study would decide optimal comminution equipment based on the particle size distribution, aspect ratio and equipment energy analysis. The impact, compress and abrasion is type of generated force by comminution. So, hammer crusher, shredder, roll crusher and ball mill have been selected because they have characteristic which is each type of force. As a result of the particle size analysis of each product, only the shredder product satisfied concrete and asphalt aggregate quality standard condition. Also, as a result of aspect ratio analysis using Imaging software program (Image J, National institute of health), most of size fraction is confirmed under 1.6 value. It was confirmed that the product has low dangerousness and satisfying to shpage index. Also, the particle reduction ratio against input energy of shredder product was the most high. Therefore, we can decide that the optimal equipment which applicable for comminuting waste glass bottle in certain particle size under 10mm is shredder. The result of study will make contribution to increasing energy efficiency of comminution processing and competitiveness of product.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Effect of Sampling and Analytical Methods on the Fibrous Materials from the Ground Water (시료 채취 조건 및 검사방법에 따른 지하수내 섬유상 물질 검출 양상에 관한 연구)

  • Kim, Ji-Yong;Kim, Jung Ran;Cheong, Hae-Kwan;Lim, Hyun-Sul;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.209-222
    • /
    • 1997
  • Authors surveyed the ground water near the waste disposed from a fiberglass production factory to confirm the presence of glassfiber in the water and to determine the effect of sampling conditions and storage on the recovery of fibrous materials in the ground water. Sample was collected at every 4 hours for 48 hours consecutively. After finishing the 48 hours sample, water sampling was done from each tap after repeated turning on and off the water for 30 seconds at each time. Sample was collected in the two 1.5 liter polyethylene bottle after vigorously shaking the bottle with the same water several times with the flowing tap water. At each paired sample, one bottle was stored stand still at room temperature, and the other sample was filtered immediately after sampling. Water was filtered on the Mixed Cellulose Ester filter with negative pressure. Each sample was divided into upper and lower layer. The other bottle was stored at room temperature standstill for 7 days and filtered in the same fashion as the other pair of sample did. Each MCE filter was divided into 4 pieces and one piece was treated with acetone to make it transparent. Each prepared sample was observed by two researchers under the light and polarizing microscopy, scanning electron microscopy and energy dispersive X-ra microanalysis. Fibers were classified by the morphology and polarizing pattern under the polarizing microscope, and count was done. 1. There was a significant fluctuation in number of the fibers, but there was no specific demonstrable pattern. 2. Non-polarizing fibers frequently disappeared after 7 days's storage. But cluster of fibers were found at the wall of the same container by scratching technique. 3. Polarizing fibers were usually found in between the filter and the manicure pasted area. Possible explanations for this phenomenon will be that either these fibers are very light or have electronic polarity. Hence, these fibers are not able to be attached on the surface of slide glass. 4. Under the scanning electron microscopic examination, the fibers which are not refractive under the light microscopy were identified as glassfiber. Other fibers which is refractive under the polarizing microscopy were identified as magnesium silicate fibers. It is strongly suggested that development of standardized method of sample collection and measurement of fibrous material in the water is needed.

  • PDF