• Title/Summary/Keyword: Waste Sulfur

Search Result 98, Processing Time 0.021 seconds

Study on Efficient Carbonizing Conditions When Carbonizing Fish Offal (어류폐기물의 탄화처리시 효율적 탄화조건에 관한 연구)

  • Jeong, Byung Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • Experiments on carbonization were conducted using fish offal generated from fish market for the purpose of resource recycling. Elemental composition of fish offal and effect of carbonation temperature on the overall yield were investigated. Carbon and hydrogen contents of fish offal were 51.1% and 7.6%, respectively in view of elemental composition. Particularly, nitrogen and sulfur contents were as high as 9.8% and 1.0%, respectively. These values suggests that odor problem of fish offal can be serious. Comparing elemental composition of fish offal with other waste materials, it is thought that carbon and hydrogen contents are considerably high. These implies that thermal disposal will be the best option for final disposal method of fish offal. As a results of carbonization experiments on Mackerel, Hairtail, Croaker and mixed sample of Mackerel, Hairtail and Croaker, carbonization patterns were quite similar irrespective of fish species. Carbonization yield was varied significantly depending on carbonization temperature at the carbonization time of 5 minutes and 10 minutes. When the carbonization time was maintained longer than 30 minutes, yield variation depending on time variation at each temperature was insignificant. Thus, it can be concluded that effect of carbonization time on overall yield was minor when the carbonization time was maintained longer than 30 minutes. Primary vaporization in carbonization conducted at the temperature of $400^{\circ}C$ was minor. Thus, difference of yield between temperature of $500^{\circ}C$ and $400^{\circ}C$ was appeared greatly. It can be concluded that yield difference depending on carbonization temperature can be neglected if the carbonizing temperature exceed $600^{\circ}C$ and carbonizing time exceed 10 minutes at the same time.

Empirical Analysis on Determinants of Air Pollution in China (중국의 대기오염 배출 결정요인에 대한 경험적 분석)

  • Li, Dmitriy D.;Wang, Wen;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • The rapid economic growth has brought tremendous pressure on the environment and caused severe air pollution in China. This study empirically examines causes of air pollution in China. Panel-corrected standard errors procedure (PCSE) was used to analyze major determinants of increasing or reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) in 30 Chinese provinces. The estimation results show that SO2 emission is mitigated as per capita regional GDP increases, but the relation between emission of NOX and per capita regional GDP is found to have an inverse N-shaped curve, which implies that emission of NOX is ultimately expected to decline with economic growth. As for increasing factors of air pollutants, electricity consumption is a significant common source of SO2 and NOX emissions. Moreover, the results show that increment of coal consumption significantly affects emission of SO2 while increase of natural gas consumption reduce emission of SO2. On the other side, investment in energy industry, and investment on treatment of waste gases are determinants of mitigating emissions of SO2, but have no impact on NOX. Consumption of diesel, truck ratio and number of vehicles increase emission of NOX. Meanwhile, higher precipitation rate is a common determinant of mitigating emissions of SO2 and NOX. Policy implications are suggested in the conclusion.

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Molecular Characterization of the Bacterial Community in Activated Sludges by PCR­RFLP (PCR-RFLP 방법을 이용한 활성 슬러지의 세균군집 분석)

  • Lee Hyun-Kyung;Kim Jun-Ho;Kim Chi-Kyung;Lee Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • Diversity of the bacterial communities and the relation between community structure and components of waste­water were analyzed by 16S rRNA-based molecular techniques. Clone libraries of the 16S rDNAs from the sludges were constructed by PCR and cloning. The 1,151 clones from a sludge sample of sewage treatment plant were clustered into 699 RFLP phylotypes and the 1,228 clones from the wastewater disposal plant of chemical industry were clustered into 300 RFLP phylotypes. Shannon-Weiner diversity indices of two sampling sites were 8.7 and 6.1, indicating that the bacterial community structure of sewage treatment plant was more diverse than that of wastewater disposal plant of chemical industry. Forty clones belonging to predominant RFLP types were selected and sequenced. Seventy percent (28 clones) of the sequenced clones were related to the uncultured bacteria in public databases. The ${\beta}-Proteobacteria$ dominated in the bacterial communities of investigated two sludge samples. 16S rDNA sequences of the sewage treatment plant were similar to those of other activated sludges, while the bacterial community in wastewater disposal plant of chemical industry rep­resented the strains identified from high-temperature, anaerobic, hydrocarbon-rich, and sulfur-rich environ­ments. This result suggested that bacterial communities depended upon the components of wastewater.

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.

A Study on Reduction of Nitrogen Oxide (NOx) and Stability of Incineration Facility by the Food Wastewater Incineration (음식물류 폐수 소각처리에 따른 질소산화물 저감 및 소각설비의 안정성 평가에 관한 연구)

  • Hwang, Seung-Min;Chung, Jin-Do;Song, Jang-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.901-908
    • /
    • 2009
  • We examine the processing method of the food wastewater to direct spray at living waste incinerator. The demoscale stoker system is used as a incineration facility. The results show that it brings effect on the reduction of nitrogen oxide ($NO_x$) concentration as well as the ammonia ($NH_3$) amount in SNCR (selective non-catalytic reduction) by the incineration of food wastewater which is containing a plentiful ammoniac nitrogen ($NH_3$-N). Furthermore, the stability of incineration facility and the extension of operation period is actualized as a improvement of clogging phenomenon on outer wall of water pipe as the 870~$950^{\circ}C$ maintain of exit temperature in a second combustor by spray of the food wastewater. The 26 items of air pollution matter of nitrogen oxide ($NO_x$), sulfur oxide ($SO_x$) and dioxin etc. are measured. The results show that it is under the value of allowable exhaust standard.

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.