• Title/Summary/Keyword: Waste Plastic

Search Result 398, Processing Time 0.021 seconds

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

Development of Automatic Dehydration System for Umbrella Drying (우산 건조를 위한 자동 제수 시스템 개발)

  • Kim, Ji-Hyun;Park, Joo-Hyung;Song, Min-Gi;Yoon, Jun-Su;Yeon, Ju-Eun;Lee, Da-Eun;Park, Hyun-Ju;Kang, Tae-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • In this paper, an automatic dewatering system for drying water from umbrellas is proposed. In the past, there were problems that users had to put on plastic for removing the water from umbrella by covering it with a plastic or using a water dryer that removes water by manually touching the umbrella to the water surface. But this method was hard to expect. To solve these problems, an air compressor was used to develop a system to remove water from the umbrella by detecting the weight of the umbrella with pressure sensor when the user puts the umbrella into the dewatering machine and driving the motor. It is expected that this invention will have economic and environmental effects by eliminating the use of waste vinyl.

Elasto-Plastic Analysis of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 탄소성해석)

  • 최규섭;김대홍;황신일;심재구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.225-234
    • /
    • 1998
  • The behavior of the underground opening depends mainly on the magnitude of the initial stress existing before excavation and on the stress redistribution due to the excavation. In the case of elasto-plastic materials such as rock mass, as the structural behavior of surrounded opening due to excavation depends on the stress path, methods and sequence of excavation have influences on the results of numerical analysis. Therefore, in order to design underground openings with large cross-section such as underground nuclear power plants, radioactive waste disposal cavems, oil storage caverns, and so on more reasonably it is desirable to consider the effect of the excavation sequence in the analysis. In this paper, the underground structure is analyzed using the finite element method and the distinct element methods with a view to review the the effect of the excavation sequence. Based on the results of the analysis the followings are discussed : influence of excavation shape and sequence, effect of structural reinforcements, influence of multi caverns.

  • PDF

Characteristics of Stress-Strain for Pocheon stone sludge (포천석분의 응력-변형률 거동특성)

  • Kim, Chan-Kee;Bak, Gueon-Jun;Cho, Won-Beom;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • In this study, a series of the isotropic compression-expansion tests and the Undrained triaxial tests were performed on low-plastic silt of Pocheon stone sludge. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data. In experimental results the deviator stress showed the work hardening behaviour after reaching its yield stress. Therefore practically useful failure criterion for low-plastic silt were required. The stress-strain behavior predicted by 11 soil parameters are compared with the results obtained 9 parameters by correlation between h and ${\eta}_1$ and constant ${\alpha}$. They are poor matched each other.

Study on Properties of Eco-friendly Pot with Biodegradable PLA/PBAT Blend Film (생분해성 PLA-PBAT 블렌드 필름을 이용한 친환경 포트의 특성 연구)

  • Park, Han-saem;Song, Kang-yeop;Kang, Jae-ryeon;Seo, Wonjun;Lee, SeonJu;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1037-1043
    • /
    • 2015
  • Since single-use disposable plastic usage has steadily been increasing, recent trends in polymeric research point to increasing demand for eco-friend materials which reduce plastic waste. A huge amount of non-degradable polypropylene (PP)-based pots for seedling culture are discarded for transplantation. The purpose of this study is to investigate an eco-friendly biodegradable material as a possible substitute for PP pot. The blend of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) was used because of its good mechanical and flexible properties as well as biodegradation. After landfill, various properties of the blend pot were investigated by UTM, SEM, NMR and TGA. The results showed the tensile strength of the blend film rapidly decreased after 5 weeks of landfill due to degradation. From NMR data after landfill, the composition of PLA in the blend was decreased. These results indicate that the biodegradation of the blend preferentially occurs in PLA component. To investigate the effect of holes in pot bottom and side on root growth, a plant in the pot was grown. Some roots came out through holes as landfill period increases. These results indicate that the eco-friendly pot can be directly planted without the removal of pot.

New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics

  • Anshar, Muhammad;Tahir, Dahlang;Makhrani, Makhrani;Ani, Farid Nasir;Kader, Ab Saman
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • We developed new composites by combining the solid waste from Low-Density Polyethylene in the form of plastic bag (PB) and biomass from rice husk (RH),in the form of $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)), as alternative fuels for electrical energy sources, and for providing the best solution to reduce environmental pollution. Elemental compositions were obtained by using proximate analysis, ultimate analysis, and X-ray fluorescence spectroscopy, and the thermal characteristics were obtained from thermogravimetric analysis. The compositions of carbon and hydrogen from the ultimate analysis show significant increases of 20-30% with increasing PB in the composite. The activation energy for RH is 101.22 kJ/mol; for x = 0.9 and 0.7, this increases by 4 and 6 magnitude, respectively, and for x = 0.5, shows remarkable increase to 165.30 kJ/mol. The range of temperature of about $480-660^{\circ}C$ is required for combustion of the composites $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)) to perform the complete combustion process and produce high energy. In addition, the calorific value was determined by using bomb calorimetry, and shows value for RH of 13.44 MJ/kg, which increases about 30-40% with increasing PB content, indicating that PB has a strong effect of increasing the energy realized to generate electricity.

A Study For The Simple Method In Dividing The Layers of Fiber-reinforced Plastic (폐 FRP선박의 재활용공정에서 용이한 면포추출공정을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • As one of the methods for recycling the FRP used for the small and medium-sized waste ships, separation of the roving layer from the mat has some merit in a sense of the recycling energy and the environmental effects. Similar characteristics between the roving and the mat make the mechanically automatic differentiation difficult. They, however, contain different ratio of the resin and the glass and the thickness. In this study photo physical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer and (2) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring the FRP sample with water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The implementation of HF treatment has been successfully tested in this study.

Multi-stage Compression Molding Technology of Fast Curing CF/Epoxy Prepreg (속경화용 탄소섬유/에폭시 프리프레그의 다단 압축 성형기술)

  • Kwak, Seong-Hun;Mun, Ji-Hun;Hong, Sang-Hwui;Kwon, Soon-Deok;Kim, Byung-Ha;Kim, Tae-Yong
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.269-276
    • /
    • 2021
  • PCM (Prepreg Compression Molding) process is a high-speed molding technology that can manufacture high-quality CFRP (Carbon Fiber Reinforced Plastic) parts. Compared to the autoclave process, it generates less waste and can significantly reduce cycle time, so various studies are being conducted in the aerospace and automobile industries. In this study, in order to improve the quality of the PCM process, a molding method was developed to increase the compression pressure of the press step by step according to the curing behavior of the prepreg. It was confirmed that this multi-stage compression molding technology is a good means to produce high-quality CFRP products and shorten cycle times. And, the laminated prepreg at room temperature was immediately put into the mold and preheated and molded at the same time, so that it could be molded without a separate preheating process. In addition, as a result of applying the same process conditions optimized for flat plate molding to three-dimensional shapes, a product similar to a flat plate in appearance could be made without the process of establishing process conditions.

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.