• Title/Summary/Keyword: Waste Nutrient Solution

Search Result 38, Processing Time 0.018 seconds

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Effects of Reclaimed Wastewater and Waste Nutrient Solution Irrigation on Seedling Growth of Chinese Cabbage (하수처리수 및 폐양액의 재이용이 배추 유묘 생장에 미치는 영향)

  • Hong, Ki-Chan;Choi, Bong-Su;Lim, Kyoung-Jae;Won, Jae-Hee;Jeon, Shin-Jae;Hur, Seung-Oh;Ha, Sang-Keun;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • Water shortages are expected to be a major impact of climate change. This study examined the growth of Chinese cabbage seedling using reclaimed wastewater and waste nutrient solution as alternative irrigation resources. Generally, the concentration of nutrients, such as $K^+$, $NH_4^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$,$NO_3^-$, $PO_4^-$ and $SO_4^{2-}$, in waste nutrient solution was higher than that in wastewater. However, Chinese cabbage seedling irrigated with wastewater was supplied a higher concentration of $Na^+$ and $Cl^-$ than waste nutrient solution. The growth of Chinese cabbage seedling irrigated with waste nutrient solution was similar or higher than those irrigated with groundwater as control, while the growth of those irrigated with wastewater was similar to those irrigated with groundwater. The total nitrogen uptake in Chinese cabbage seedling irrigated with groundwater, waste nutrient solution from organic and inorganic hydroponic cultures, and wastewater was 5.47, 10.02, 5.20, and 4.59 mg/plant, respectively. The nitrogen uptake of Chinese cabbage seedling irrigated with waste nutrient solution from organic hydroponic substrates in a 50% lower dose than recommended was 8.34 mg/plant, which is higher than that of the cabbage irrigated with groundwater. Overall, the results suggest that waste nutrient solution and wastewater can be used as alternate water resources, and can allow a reduction in the amount of fertilizer needed to raise Chinese cabbage seedling.

Feasibility of Reclaimed Wastewater and Waste Nutrient Solution for Crop Production in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Awad, Yasser M.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • BACKGROUND: Development of water recycle technologies is important for human health and sustainable agriculture. However, few studies have been conducted to examine the purification methods or the water quality of reclaimed wastewater in Korea. METHODS AND RESULTS: In this study, the different wastewaters including reclaimed wastewater and waste nutrient solution (NS) were evaluated. The changes of water quality in reclaimed wastewater and NS were determined using ultraviolet (UV) treatment and sand filtration with charcoal. Our results showed that one of the most critical limitations of reusing wastewater was the presence of harmful pathogens that possibly cause human health risks. CONCLUSION(s): This study suggests that the application of UV treatment or combined with sand filtration on reclaimed wastewater and waste NS effectively removes the total coliform bacteria below the harmful or acceptable level. For future studies, a long-term field monitoring after applying reclaimed wastewater or NS is needed.

Method for nutrient solution extraction from used diposed diapers (일회용 폐기저귀에서 양액 추출 방안)

  • Nobel, Ballhysa;Han, Se Hee
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.34-41
    • /
    • 2020
  • Used disposable diapers have been considered for a long time as a type of waste difficult to recycle and valorize due to their composite nature including plastic, cellulose pulp, a super absorbent polymer and either urine, feces or both. Therefore, the fate of disposed diapers often is either incineration or landfill burial which both have various adverse environmental impacts. However, used disposable diapers contain nutrients: cellulose is an organic matter while urine and feces contain non negligible amounts of nitrogen, phosphorus and potassium which are primary nutrients included in most chemical fertilizers used in agriculture. In a scope of waste recycling and valorization, this study focuses on developing a method to achieve nutrient solution extraction from used disposable diapers. The experiment essentially consists in shredding the diapers and letting them macerate in solutions of sodium hydroxide with various concentrations to allow breaking down of the cellulose and super absorbent polymer and release of urine and feces before sterilizing the solutions in an autoclave to remove potential coliform bacteria. At the end of the experiment, a set of parameters is measured for the final solution to identify concentrations of nutrients as well as presence or absence of harmful substances. Results are discussed and directions for future studies are suggested, which include mechanization of the diapers shredding process or added aeration to enhance nitrification and absorption of extracted nutrients from plants.

Effect of Waste Nutrient Solution and Reclaimed Wastewater on Chinese Cabbage Growth and Soil Properties (폐양액과 하수처리수 재이용이 배추생육 및 토양에 미치는 영향)

  • Choi, Bong-Su;Lim, Jung-Eun;Shin, Yong-Keon;Yang, Jae-E.;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.394-399
    • /
    • 2011
  • This study evaluated the effect of using waste nutrient solution (WNS) and reclaimed wastewater (WW) on the growth of Chinese cabbage and soil quality. The pH and electrical conductivity (EC) values of waste nutrient solution were 6.3 and $1.5dS\;m^{-1}$ and being 6.8 and $0.4dS\;m^{-1}$ in reclaimed WW, respectively. WNS found to be included more than $10g\;m^{-2}$ of $NO_3^-$, $K^+$, $SO_4^{2-}$ and $Ca^{2+}$, thereby enhancing Chinese cabbage growth. However, $Cl^-$ and $Na^+$ contents were higher than other nutrients in WW. Among the three irrigation resources, no significant differences were found for the growth of Chinese cabbage plants. On the other hand, pH was decreased in WNS-treated soil when compare to that in WW-treated soil which pH was increased. In spite of the uptake of nutrients by the growing plants, irrigation of the WNS led to an increase in available $P_2O_5$ and exchangeable cations such as $K^+$ and $Mg^{2+}$ in the soil when compared to soil that irrigated by groundwater or WW. Taken together, the use of WNS can remarkably reduce the amount of the chemical fertilizer for Chinese cabbage production; however, WNS can possibly cause a problem as nutrients accumulation in soil.

A Study on the Environmental Impact of Biological Production Facilities (대규모 생물생산 시설의 환경 영향 연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.106-115
    • /
    • 1996
  • This study was carried out to provide fundamental data for reuse of resources and prevention of environmental pollution Actual states of environmental pollution by biological production facilities were investigated. Various pollution loads and quantity of wastes from greenhouse and animal housings estimated. In greenhouse contents of investigation were wastes of plastic cover, noise of heater and fan, air pollutant of heater, and wastes of soilless culture system, etc. In animal housings, those were actual state of livestock waste treatment and reuse, pollutant mass unit discharge, noise pollution, and malodorant, etc. The main pollutants discharged from greenhouses were wastes of plastic cover, rockwool, and waste fluid of nutrient solution. Developments of waste disposal methods for plastic cover and rockwool are required. And recycle technique of nutrient solution for soilless culture should be developed and propagated. With the buildup of legal control, pollutant mass discharged from livestock wastes are, on the decrease. The other side, reuse of livestock excreta increased. Most animal housings are located near the dwelling house. Malodorant and noise from animal housings have bad effects on the rural living conditions. So developments of integrated complex for small scale livestock farms are required.

  • PDF

Fate of Nitrogen and Phosphorous in Hydroponic Waste Solution Applied to the Upland Soils (시설하우스 폐양액의 토양 처리에 따른 질소 및 인의 이동)

  • Yang, Jae-E.;Park, Chang-Jin;Yoo, Kyung-Yoal;Kim, Kyung-Hee;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.132-138
    • /
    • 2005
  • Objective of this research was to evaluate the fate of nitrogen and phosphorous in hydroponic waste solution from the plastic film house cultivation applied to the upland soil by column leaching and field experiment. The pH and EC of leachate were decreased by the reaction with the upland soil in the column leaching experiment. The EC and concentrations of $H^+,\;K^+,\;and\;{NH_4}^+$ of leachate were decreased as the column length (soil depth) was increased. But these were increased as the amounts of the hydroponic waste solution were increased field experiment growing red pepper (Capsicum annum L.) to monitor the nutrients movement using ion exchange resin capsule demonstrated that the nutrient concentration of soil solution was increased in the orders of $PO_4-P. Nitrate concentration of resin capsule inserted into the soil was relatively higher than other nutrients $(NH_4-N\;and\;PO_4-P)$ at the 45 cm of soil depth. The overall results demonstrated that the hydroponic waste solution could be recycled as plant nutrients to enhance fertility of soils. But nitrate leaching was a major factor for safe use of the hydroponic waste solution in soil.

Chemical Characteristics of Ground Water for Hydroponics and Waste Nutrient Solution after Hydroponics in Chungbuk Area (충북지역 양액 재배용 지하수 및 폐양액의 화학적 특징)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Lee, Ki-Yeol;Yun, Tae;Park, Seong-Gyu;Lee, Cheol-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • This survey has been conducted to obtain basic data of the quality of ground water for hydroponics and waste nutrient solution after hydroponics in hydroponic farms in Chungbuk area. Ground water samples were collected and analyzed at 19 sites of hydroponic farms. Waste nutrient solution samples were analyzed at 15 sites selected of them. The values of several components in ground water for hydroponics were as follows. pH range was shown from 6.2 to 7.7 and the average was 6.8. EC range was shown from 0.10 to 0.45 dS $m^{-1}$ and the average 0.23 dS $m^{-1}$. $NO_3-N$ concentrations was ranged from 0.12 to 13.77 mg $L^{-1}$, $SO_4^{2-}$ concentrations was ranged from 1.84 to 63.01 mg $L^{-1}$ and $Cl^-$ concentrations were ranged from 10.46 to 72.09 mg $L^{-1}$. Average values of $NO_3-N$, $SO_4^{2-}$ and $Cl^-$ were 4.00 mg $L^{-1}$, 12.70 mg $L^{-1}$ and 27.57 mg $L^{-1}$, respectively. $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ concentrations were ranged from 3.24 to 36.99 mg $L^{-1}$, 1.44 to 14.93 mg $L^{-1}$ and 6.12 to 25.25 mg $L^{-1}$, respectively. Average concentrations were 13.06 mg $L^{-1}$ in $Ca^{2+}$, 6.02 mg $L^{-1}$ $Mg^{2+}$ and 12.08 mg $L^{-1}$ in $Na^+$. In waste nutrient solution after hydroponics, pH range was shown from 4.3 to 8.8 and the average was 6.7. EC range was shown from 0.44 to 2.37 dS $m^{-1}$ and the average 1.15 dS $m^{-1}$. Range of $NO_3-N$, $PO_4-P$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ in waste nutrient solution were $10{\sim}212$, $0.56{\sim}26.1$, $10{\sim}295$, $16{\sim}215$, $9{\sim}54$ and $10{\sim}53$ mg $L^{-1}$ respectively. Average concentration were 100 mg $L^{-1}$ in $NO_3-N$, 12.15 mg $L^{-1}$ in $PO_4-P$, 99 mg $L^{-1}$ in $K^+$, 78 mg $L^{-1}$ in $Ca^{2+}$, 26 mg $L^{-1}$ in $Mg^{2+}$ and 26 mg $L^{-1}$ in $Na^+$. Inorganic matters in waste nutrient solution after hydroponics was higher than that of ground water for hydroponics.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.