Browse > Article
http://dx.doi.org/10.5338/KJEA.2007.26.1.042

Chemical Characteristics of Ground Water for Hydroponics and Waste Nutrient Solution after Hydroponics in Chungbuk Area  

Lee, Gyeong-Ja (Chungbuk Agricultural Research and Extension Services)
Kang, Bo-Goo (Chungbuk Agricultural Research and Extension Services)
Lee, Ki-Yeol (Chungbuk Agricultural Research and Extension Services)
Yun, Tae (Chungbuk Agricultural Research and Extension Services)
Park, Seong-Gyu (Chungbuk Agricultural Research and Extension Services)
Lee, Cheol-Hee (Chungbuk Agricultural Research and Extension Services)
Publication Information
Korean Journal of Environmental Agriculture / v.26, no.1, 2007 , pp. 42-48 More about this Journal
Abstract
This survey has been conducted to obtain basic data of the quality of ground water for hydroponics and waste nutrient solution after hydroponics in hydroponic farms in Chungbuk area. Ground water samples were collected and analyzed at 19 sites of hydroponic farms. Waste nutrient solution samples were analyzed at 15 sites selected of them. The values of several components in ground water for hydroponics were as follows. pH range was shown from 6.2 to 7.7 and the average was 6.8. EC range was shown from 0.10 to 0.45 dS $m^{-1}$ and the average 0.23 dS $m^{-1}$. $NO_3-N$ concentrations was ranged from 0.12 to 13.77 mg $L^{-1}$, $SO_4^{2-}$ concentrations was ranged from 1.84 to 63.01 mg $L^{-1}$ and $Cl^-$ concentrations were ranged from 10.46 to 72.09 mg $L^{-1}$. Average values of $NO_3-N$, $SO_4^{2-}$ and $Cl^-$ were 4.00 mg $L^{-1}$, 12.70 mg $L^{-1}$ and 27.57 mg $L^{-1}$, respectively. $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ concentrations were ranged from 3.24 to 36.99 mg $L^{-1}$, 1.44 to 14.93 mg $L^{-1}$ and 6.12 to 25.25 mg $L^{-1}$, respectively. Average concentrations were 13.06 mg $L^{-1}$ in $Ca^{2+}$, 6.02 mg $L^{-1}$ $Mg^{2+}$ and 12.08 mg $L^{-1}$ in $Na^+$. In waste nutrient solution after hydroponics, pH range was shown from 4.3 to 8.8 and the average was 6.7. EC range was shown from 0.44 to 2.37 dS $m^{-1}$ and the average 1.15 dS $m^{-1}$. Range of $NO_3-N$, $PO_4-P$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ in waste nutrient solution were $10{\sim}212$, $0.56{\sim}26.1$, $10{\sim}295$, $16{\sim}215$, $9{\sim}54$ and $10{\sim}53$ mg $L^{-1}$ respectively. Average concentration were 100 mg $L^{-1}$ in $NO_3-N$, 12.15 mg $L^{-1}$ in $PO_4-P$, 99 mg $L^{-1}$ in $K^+$, 78 mg $L^{-1}$ in $Ca^{2+}$, 26 mg $L^{-1}$ in $Mg^{2+}$ and 26 mg $L^{-1}$ in $Na^+$. Inorganic matters in waste nutrient solution after hydroponics was higher than that of ground water for hydroponics.
Keywords
ground water; waste nutrient solution; hydroponics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, D. B., Lee, K. B. and Rhee, K. S. (1996) Changes of chemical contents in groundwater at controlled horticulture in honam area, Korean J. Environ. Agric. 15(3), 348-354   과학기술학회마을
2 Bae, J. H. and Lee, Y. B. (1996) Analysis of well water quality for hydroponic farms in chollabuk-do area, J. Bio. Fac. Env. 5(2), 131-137
3 APHA, AWWA, WPCF. (1992) Standard methods for the examination of water and wastewater, 18th, Washington. DC
4 Kim, J. H., Lee, J. S., Kim, B. Y., Hong, S. G. and Ahn, S. K. (1999) Analysis of ground water used for agriculture in kyonggi province, Korean J. Environ. Agric. 18(2), 148-153
5 Shin, W. K., Lee, Y. H., Cheon, S. G., Hwang, Y. H. and Cho, K. H. (1998) Ionic characteristics of the ground water for hydroponics in kyeongnam area, J. Bio. Fac. Env. 7(3), 246-252
6 Buwalda, F. and Kim, K. S. (1994) Effects of irrigation frequency on root formation and shoot growth of spray chrysanthemum cuttings in small jute plugs, Scientia Horticulturae 60, 125-138   DOI   ScienceOn
7 Lee, S. Y., Lee, S. J., Seo, M. W. Lee, S. W. and Sim. S. Y. (1999) Reusing techniques of Nutrient Solution for recycling hydroponic culture of lettuce, J. Bio Env. Con. 8(3), 172-182
8 Benoit, F. (1992) Practical guide for soilless culture techniques, European Vegetable R&D Center. pp. 10-12
9 Lee, K. B., Lee, D. B., Kang, J. G. and Kim, J. D. (1999) Seasonal variation in water quality of mankyeong river and groundwater at controlled horticulture region, J. Kor. Soc. Soil Sci. Fert. 32(3), 223-231
10 Ministry of Environment. (2000) The standard methods of water analysis. Ministry of Environment, Seoul, Korea
11 Lee, J. S., Jung, G. B., Kim, J. H. and Kim, B. Y. (1998) Irrigation water quality of the Kyoungan stream, Korean J. of Environ Agric. 17(2), 136-139
12 Bae, J. H., Cho, Y. R. and Lee, Y. B. (1995) Field survey for well water quality in hydroponic farms, J. Bio. Fac. Env. 4(1), 80-88
13 Runia, W. T. (1994) Disinfection of recirculation water from closed cultivation systems with ozone, Acta Hort. 361, 388-396
14 Hollen, B. F., Owens, J. R. and Sewell, J. I. (1992) Water quality in a stream receiving dairy feedlot effluent, J. Environ. Qual. 11, 5-9   DOI   ScienceOn
15 Sharpley, A. N., Chapra, S. C. Wedepohl, R., Sims, J. T., Aaniel, T. C. and Reddy, K. R. (1994) Managing agricultural phosphorus for protection of surface waters : Issues and options, J. Environ. Qual. 23, 437-451   DOI   ScienceOn
16 Wohanka, W. (1992) Slow sand filtration and UV radiation : low-cost techniques for disinfection of recirculating nutrient solution or surface water, Pore. 8th Int. Congr. Soilless Culture, 497-511