• Title/Summary/Keyword: Waste Incinerator

Search Result 225, Processing Time 0.023 seconds

Development of a 3-Dimensional Turbulent Reaction Computer program for the Incineration of a Carbon Tetrachloride($CCl_4$) ( I ) (사염화탄소($CCl_4$) 소각을 위한 로타리 킬른 소각로 3차원 난류반응 컴퓨터 프로그램 개발( I ))

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.100-109
    • /
    • 1994
  • In this study, it is investigated that the possibility of the numerical simulation for the incineration of the hazardous material, crbon tetrachloride($CCl_4$). A 3-dimensional numerical technology is applied for turbulent reacting flows of the full-scale Dow Chemical incinerator. The calculations are made by a CRAY-2S, super computer. The major parameters considered in this study are kiln revolution rate (rpm), filling ratio of the solid waste(f), burner Injection velocity and angle, and turbulent air jets for swirl. And the employed turbulent reaction model is the eddy break-up model which is a kind of fast chemistry model assuming general equilibrium and used for a premixed flame. The calculated flow fields are presented and discussed. 1) The presence of turbulent air nozzles for swirl gives rise to visible increase of the convective motion over the region of the solid waste. This implies the possibility to enhance the mixing of the waste with the surrounding all and thereby to reduce thermal and species stratification, which were reported in a large rotary kiln operation. 2) Considering that the location of the recirculation region has a strong relation with the heating rate of the solid waste, the control of the recirculation region by the burner injection angle Is quite desirable in the sense of the flexible design of the rotary kiln incinerator for a carbon tetrachloride. 3) Finally, it is found that the eddy break-up model Is not suitable for carbon tetrachloride($CCl_4$) because this model is not incorporated the flame inhibition trend due to the presence $CCl_4$compound.

  • PDF

A Study on the RDF fuel mixing with household and organic wastes (생활(生活)쓰레기 및 유기성폐기물(有機性廢棄物) 혼합(混合)에 따른 RDF 연료화(燃料化)에 관한 연구(硏究))

  • Ha, Sang-An;You, Mi-Young;Kim, Dong-Kyun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.52-57
    • /
    • 2011
  • This study was conducted to examine the possibilities to utilize the mixture of domestic and organic wastes from B-city as a fuel. All types of mixing ratio for uncarried waste, sludge cake, and food waste were found 10 generate heating value with 6,000 kcal/kg, and in case of sludge cake the concentration of toxic substance produced was found to be decreased as air-fuel ratio and temperature were increased. It was noted that toxic gases such as CO, NOx, and SOx were observed below concentration of emission standard, and temperature inside the incinerator was stabilized at 2 of air-fuel ratio and 800$^{\circ}C$. It was observed that a heating value of 6000 kcal/kg generated using RDF(Refuse Derived Fuel) was appropriate to utilize a fuel if a complete combustion was attained.

A Study on Quantitative Supply of Sewage Sludge for Co-Incineration of Municipal Solid Waste and Sewage Sludge (하수슬러지와 생활폐기물 혼합소각시 하수슬러지 정량공급에 관한 연구 - Batch Test 중심으로)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.64-69
    • /
    • 2013
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (municipal solid waste) and SS (sewage sludge) through the quantitative supply of sewage sludge. In this study, optimum water content to operate normally incinerator is 85%. In order to increase the workability of sewage sludge, it is necessary to supply properly water. In the case study of sites, optimum water content is 87% due to the water evaporation. Therefore, it was found that the water content up to 87% would be reached the stable operation of co-incinerator on the mixture of municipal waste solid and sewage sludge.

Physicochemical Properties of Landfill Mined Wastes from Old Landfill Site (불량 매립지에서 굴착된 폐기물의 물리화학적 특성평가)

  • 남궁완;이노섭;박준석;인병훈
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.99-108
    • /
    • 2002
  • This study was carried out to evaluate the Physicochemical characteristics of mined waste(separated waste and soil) and to predict environmental effect of an old landfill site located at north of Seoul. Municipal solid waster(MSW) had been disposed of at the old landfill site used in this study for about 2 years(1990-1992). The old landfill site selected for this study had accepted mainly municipal solid waste. The landfill-mined waste contained separated waste (40.9%) and soil(59.1%) by wet weight basis. The separated waste consisted of combustible(91.0%) and non-combustible(9.0%). The combustible waste was mainly non-biodegradable plastics. The low heating value of the separated combustible waste, which is calculated by Dulong's equation, was as high as 3,470kcal/kg. According to the Korean Extraction Procedure, separated waste and soil were proved to be not hazardous. The total content of heavy metal in the separated waste and soil met standard of California State, USA. Therefore the separated waste may be relandfilled at a sanitary landfill site and/or burned up at an incinerator, and the separated old soil may be used ad landfill cover-soil at a sanitary landfill site. Water quality of two streams was grade IV, of which water could be used as industrial and agricultural water. The streams near the landfill site might not be contaminated by leachate from the old landfill site. It was estimated that organic matter in the old landfill site would not be actively biodegraded within a short period of time.

A Characteristics of Hg, Pb, As and Se Emitted from Small and Medium Size Waste Incinerator Stacks (중.소형 폐기물 소각시설에서 배출되는 수은, 납, 비소, 셀렌 배출특성)

  • Lee, Han-Kook;Moon, Bu-Shik;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1205-1214
    • /
    • 2005
  • This study was carried out to investigate the emission characteristics of volatile metals(Hg, As, Se) and semi volatile metals such as Pb from small and medium size municipal solid waste incinerators(MSWIs). The concentrations of Hg, Pb, As and Se in emission gas from small size waste incinerators were higher than those of medium size waste incinerators. This is probably due to less air pollutant control devices and high emission gas temperature of the small size waste incinerators relative to the medium size waste incinerators. Emission gas temperature from small and medium size waste incinerators were divided into 2 groups. The first group was about $100^{\circ}C$ and the second roup in the range of $400{\sim}700^{\circ}C$. The concentrations of emission gas at the second group were Hg $70.43\;{\mu}g/Sm^3$, Pb $0.94\;{\mu}g/Sm^3$, As $9.83\;{\mu}g/Sm^3$ and Se $5.05\;{\mu}g/Sm^3$. The concentrations of Hg, Pb, As and Se at the first group were lower than those found at the second group. Besides, the removal efficiencies of Hg in medium size waste incinerators were $55.2{\sim}95.9%$. Emission gas temperature reduction from waste heat boiler(WHB) contribute to control of Hg. Based on above results, we postulate that the temperature of flue gas should play a very important role in volatile metal control in small and medium size MSWIs. In order to improve the volatile metals removal efficiency, the temperature of cooling system must be controlled and the air pollution control device should be operated properly.

A Study on the Present Condition and Countermeasure of Domestic Waste Recycling in Iksan city. (익산시의 생활폐기물 재활용 현황 및 대책에 관한 연구)

  • 육찬남
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.29-34
    • /
    • 1999
  • 1.The domestic waste generated in Iksan city was 177 tons a day last year. 27 tons of that were recycled daily. Due to increased awareness the recycling rate also increased. 2. It is preferred to get continuous publicity and to enforce the program steadily to activate exchange centers and places like a flea market for reusable things, which will lead to increase the life-span of the current designated landfill site. 3. Because burying food waste in underground will be prohibited from year 2005, the reutilization of food waste by feeding domestic animals like ducks and making artificial fertilizer are preferred. 4. The case of Iksan city is expected to be a model to other cities by establishing a display room to accommodate its detail work demonstration, displaying modeled utilization items and exchange center, incinerator, duck ranch, lawn ground, etc. for making a city as an environmental preservation city model.

  • PDF

Physico-chemical characterization of individual particles emitted from the air pollution point sources (대기 점오염원에서 배출되는 개별입자상물질의 물리화학적 특성)

  • Park Jeong-Ho;Suh Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.761-770
    • /
    • 2005
  • Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, H-C oil boiler, and metal manufacturing industry. The main components were Si and AI in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the H-C oil boiler and S and Fe in the metal manufactory industry, respectively.

Challenges of Medical Waste Treatment in Fiji (피지국에서의 의료폐기물 처리현황과 문제점)

  • Kim, Daeseon;Bolaqace, Josefa;Rafai, Eric;Lee, Chulwoo
    • Journal of Appropriate Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • Medical waste is any kind of waste that contains infectious material and recommended not to be transferred for infection control. As a means of disposal, incineration has better points than dumping or landfill in the quantity reduction, odorless and nonhazardous. However, open burning and incineration of health care wastes under bad circumstances, can result in the emission of environmental pollutants to air. A burial of biological waste brings pollution of soil and water. Most of sub divisional hospitals in Fiji transfer their medical wastes to divisional hospitals for incineration. In 2011, 62,518 kg of medical waste was incinerated in the three divisional hospitals. However, some medical wastes are considered as general waste and burnt or sent to landfill site, some are buried on site in some sub-divisional hospitals. In this regards, urgent education is necessary for awareness promotion to relevant personnel in medical waste treatment. On site incineration using small scale incinerator is more recommended than transportation of medical wastes treatment in Fiji. Moreover, remotely controllable and fixable small scale of incinerator is more desirable in sub-divisional hospitals. It is recommended that Fiji government to set up a legal framework for medical waste management (MWM), to develop specific guidelines for MWM, to set up a training system for MWM to ensure that all relevant personnel are trained, to develop a monitoring and supervision system for MWM, to clarify the future financing of MWM activities, and to improve the MWM infrastructure.

Co-incineration Characteristics of Sewage Sludge and Industrial Waste Using the Rotary Kiln Incinerator (로타리킬른 소각로를 이용한 하수슬러지와 사업장폐기물의 혼합소각 특성)

  • Yang, Dong-Jib;Ko, Jae-Cheol;Kim, Jeong-Keun;Park, Hui-Jae;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • This research were performed to evaluate co-incineration characteristics of sewage sludge and industrial waste in rotary kiln incinerator, and provide the fundamental data. Plastic portion (42.55%) in this industrial waste showed over 3 times higher than that (11.92%) of paper. Korean proximate analysis of the waste mixed with sewage sludge and industrial waste (3 : 7, volumetric basis) showed 16.3% of moisture, 70.5% of volatile solids, and 13.2% of ash, respectively. Low heating value of the mixed waste was 4,513kcal/kg. So it was thought that the mixed waste of sewage sludge and industrial waste (containing 43% of plastics and 12% papers) has enough heating value for co-incineration. The incineration of mixed waste showed the lowest SOx and NOx concentrations at $700^{\circ}C$. However, the operation at $950^{\circ}C$ was feasible in considering dioxin and the other hazardous gases. It was concluded that use of $Ca(OH)_2$ should be under investigation for the operation at $950^{\circ}C$.

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.