• Title/Summary/Keyword: Waste Gate Turbocharger

Search Result 6, Processing Time 0.026 seconds

A study about reducing Turbocharger Pulsation of 3 cylinder engine (3 기통 엔진의 터보 차저 맥동 저감에 대한 연구)

  • Seo, Kwanghyun;Cho, Sungyong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.667-669
    • /
    • 2014
  • Development of 3 cylinder turbo charger engine is increasing due to engine down-sizing, cost reduction and emission regulations. However, 3 cylinder engine makes higher Exhaust manifold gas pressure(P3) pulsation than 4 cylinder engine and it generate boosting air with high pulsation. The mechanical waste-gate turbocharger just controlled by the boosting air has higher movement because of this high pulsation boosting air. This causes high vibrations to wasted gate and accelerate wear of the linkage system. So we need to understand out of the exhaust gas pressure pulsation changed by turbocharger compressor pressure(P2) Pulsation. In this study, we discuss how to prevent to abnormal movement of the turbo actuator by stabilized P2 Pulsation.

  • PDF

Thermal Shock Durability Test of a Gasoline Turbocharger Waste Gate Valve Assembly Manufactured by a Metal Injection Molding (금속분말사출성형공법을 이용한 가솔린 터보차저의 웨이스트 게이트 밸브 어셈블리 열 충격 내구 시험)

  • Nam, Chungwoo;Han, Manbae;Chun, Bongsu;Shin, Jaesik;Kim, Jongha;Min, Doosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • A waste gate valve (WGV) assembly for a gasoline turbocharger is typically manufactured by means of precision casting. In this study, however, it was newly manufactured in a more innovative way, metal injection molding (MIM) using Inconel 713C alloy, and its performance was tested in a 1.6L direct injection gasoline engine by a thermal shock durability test that lasted 300 hours, after which the results were compared to those of a precision-cast WGV assembly with regard to the engine intake boost pressure, turbine wheel speed, and transient intake pressure. It was found that the two WGV assemblies showed similar performance levels throughout the durability test.

Effects of VGT on Part Load Performance of Diesel Engine (VGT가 디젤엔진의 부분부하 성능에 미치는 영향)

  • Choi, Kwon Sick;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.680-686
    • /
    • 2004
  • Recently, the application of variable geometry turbocharger (VGT) to the high speed direct injection (HSDI) diesel engine has gained more and more interest in automotive industry. A steady state experimental investigation has been undertaken on a 1.5L HSDI diesel engine to verify the benefits of VGT comparing to the standard engine having a waste gate turbocharger (WGT). Specifically, part load performances (e.g., fuel economy and emission) have been investigated under various vane angles of the VGT. The results show that the real exhaust gas recirculation (EGR) rate as well as the pumping loss is very important to improve break specific fuel consumption (BSFC). It was previously known that the pumping loss only is a main parameter. In addition, the trade-off relationship between BSFC and NOx according to boost pressure, and the decreasing tendency of NOx with increasing real EGR rate have been verified. 1-D numerical analysis also has been performed, and the numerical results are in good agreement with experimental results.

  • PDF

Study on the Improvement Methods of Engine Efficiency in Hybrid Excavator (하이브리드 굴삭기용 엔진의 효율 향상 방안에 관한 연구)

  • Park, Minje;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.392-400
    • /
    • 2016
  • In this paper, a study based on engine operating conditions versus hybrid excavator engines was conducted about the engine performance and fuel consumption via the 1-D engine simulation model. First of all, engine operating points with performance and emission were determined by driving patterns. The 1-D HFEM(High Frequency Engine Model) was developed for deep insight into engine combustion and the energy conversion phenomena. In accordance with changing operating points, especially High Idle and Rated output conditions, engine parameters and systems such as turbocharger(Waste Gate Turbocharger and Variable Geometry Turbocharger) injection strategies and EGR(Exhaust Gas Recirculation) should be considered. Therefore, various configurations and parametric analysis with optimization methods in hybrid excavator were simulated and optimized by NLPQL(Non-linear Programming by Quadratic Lagrangian algorithm) in 1-D HFEM. As a result, the fuel consumption with the developed hybrid electric excavator engine could be significantly decreased and bsfc(Brake Specific Fuel Consumption) was also reduced about 5 % to 7 % without any performance degradation.

Compare Efficiency and Characteristics according to the WGT and VGT Application on the Off-road Engines (Off-road 엔진에서 WGT와 VGT장착에 따른 효율 및 특성 비교)

  • Shin, Jaesik;kang, Jungho;Ha, Hyeongsoo;Jung, Haksup;Pyo, Sukang
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • The aim of this study is to compare the effectiveness of turbo chargers on engines for off-road use when combined with WGT and VGT technologies. The effectiveness of turbo chargers was measured and performance was compared using a functional model. Exhaust characteristics were compared using WGT and VGT technologies through a gas analyzer. Results showed VGT technology was more effective at high RPM compared to WGT technology. When it came to maximising turbo performance, VGT was more effective than WGT in every test. WGT and VGT produced similar exhaust NOx levels, whereas the VGT was more effective on the PM.

Exhaust Gas Recirculation System Applied to 56 kW Off-Road Vehicle to Satisfy the Tier 4 Interim Emission Regulation (Tier 4 Interim 배기규제 만족을 위한 56kW급 오프로드 차량 EGR 적용에 관한 연구)

  • Kang, Jeong-Ho;Han, Joon-Sup;Chung, Jae-Woo;Jeong, Gun-Woo;Cho, Gyu-Baek;Lim, Jung-Ho;Pyo, Su-Kang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 2012
  • In general, transportation sources include both on-road vehicles and off-road equipment. Off-road vehicles have usually used diesel engines, which have the disadvantage of high NOx emission. Common rail direct injection (CRDI) and after-treatment systems have been applied to meet the exhaust gas emission regulations for diesel vehicles. In the present, agricultural machinery has satisfied the Tier 3 emission regulations by using waste gate turbocharger (WGT) and internal exhaust gas recirculation (EGR). In this paper, the combustion and emission characteristics of an EGR system applied to a 56kW off-road vehicle in non-road transient cycle (NRTC) mode have been investigated. The EGR map was made from foundation experiments determining the EGR duty for all engine operating conditions, and then this map was applied to the NRTC mode. Consequently, the NOx emission was reduced by the EGR system, and the Tier 4 interim emission regulations were satisfied by using both the EGR system and an after-treatment system.