• Title/Summary/Keyword: Waste Copper

Search Result 210, Processing Time 0.037 seconds

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF

Surface Modification of Phosphoric Acid-activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions

  • Choi, Suk Soon;Choi, Tae Ryeong;Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.589-598
    • /
    • 2021
  • The purpose of this study was to analyze the efficiency with which phosphorylated spent coffee grounds (PSCG) remove cationic Cu(II) ions from an aqueous solution. The pHpzc of the SCG was 6.43, but it was lowered to 3.96 in the PSCG, confirming that an acidic functional group was attached to the surface of the PSCG. According to FT-IR analysis, phosphorylation of the SCG added P=O, P-O-C (aromatic), P=OOH, and P-O-P groups to the surface of the adsorbent, and the peaks of the carboxyl and OH groups were high and broad. Also, the specific surface area, mesopore range, and ion exchange capacity increased significantly by phosphorylation. The adsorption kinetics and isothermal experiments showed that Cu(II) adsorption using SCG and PSCG was explained by PSO and Langmuir models. The maximum Langmuir adsorption capacity of SCG and PSCG was 42.23 and 162.36 mg/g, respectively. The adsorption process of both SCG and PSCG was close to physical adsorption and endothermic reaction in which the adsorption efficiency increased with temperature. PSCG was very effective in adsorbing Cu(II) in aqueous solution, which has great advantages in terms of recycling resources and adsorbing heavy metals using waste materials.

Variation of Copper Content in Paddy Soil and Rice from Mangyeong River Area (만경강 유역의 논토양과 수도체중 Cu 함량의 변화)

  • Kim, Seong-Jo;Lee, Man-Sang;Ryu, Taek-Kyu;Kim, Un-Sung;Yoon, Ki-Woun;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 1994
  • To investigate differences with the polluted sources on Cu contents in soils and paddy rices under water pollutions, soils with the distance, the surface(0-15㎝ depth) and subsurface(15-30㎝ depth) in 1982 and 1990, and rice plants at the soil sampling sites in 1990 were separately sample at Mangyeong River area under the influence of municipal and industrial waste water from Jeonju city. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with mixture of $HNO_3$ and $HClO_4$ for analyzing Cu, Cd, Zn, Pb by atomic absorption spectrophotometry. Cu contents in soils ranged from 5.20 to 71.70 mg $kg^{-1}$. Average Cu level in 1990 was higher than that in 1982. Variation of Cu content with the distances from the source of waste water in 1990 was more regularly decreased than that in 1982. A significant correlation was observed between Cu contents in leaf sheath of rice plant and Cu, Zn and Pb contents in soils. Cu contents in soil was correlated with Zn and Pb in soil at area affected by waste water, regardless of years and soil depths. Cu contents in brown rice ranged from 0.4 to 10 mg $kg^{-1}$, and it was the lowest in parts of rice plant, and Cu content in panicle axis was 2.3 times higher than that in brown rice.

  • PDF

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Column Tests for the Design of PRB System using CFW (음식폐기물 탄화재로 충진된 PRB설계법 제안을 위한 컬럼실험)

  • Han, Jung-Geun;Yoon, Won-Il;Jung, Dong-Ho;Kim, Yong-Soo;Lee, Jong-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Permeable Reactive Barriers (PRB) method is an economical method that does not require any other methods to be operated once it is installed as it controls of groundwater flow in the barrier, which is inserted a reactive material on the way of pollutant. The major dominant element of PRB is a reactive material in the reactive wall, and such factors as purification efficiency and used time based on the chemical and physical features in between the reactant and pollutant. High purification efficiency can be expected when a rational design that is synthetically considered in features of packing density, operation period, and adsorption reactant of pollutant. A column test was conducted for an application test using CFW as its adsorption reactant in order to remove copper($Cu^{2+}$) in the PRB system. The CFW was used for the reactant and selected inflow speed, density and thickness of PRB as its necessary factors for design of PRB. As a result of the experiment, the removal efficiency decreased as operating time of PRB increased and the efficiency linearly increased upon the length. Therefore, it is confirmed that the thickness of reactive materials in PRB system can be designed using the proposed formula considering purification time and density of CFW.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Characterization of lead isotope emission profiles in non-ferrous smelters in South Korea (국내 비철금속 제련시설에서의 납 동위원소 배출특성 연구)

  • Park, Jin-Ju;Kim, Ki-Jun;Park, Jin-Soo;Yoo, Suk-Min;Park, Kwang-Soo;Seok, Kwang-Seol;Shin, Hyung-Sun;Song, Guem-Joo;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.333-339
    • /
    • 2013
  • This study was conducted to build up the inventories of Pb isotopic compositions of major Pb pollution sources in South Korea. Since non-ferrous metal smelters are one of major anthropogenic sources, two smelters for zinc, each one of smelter for lead and copper were selected for the study. The Pb concentrations and isotopic compositions of metal ores, wastewater, sludge, metal rod and produced sulfuric acid were analysed to understand the Pb isotopic patterns in environment. The isotopic ratio, $^{206}Pb/^{207}Pb$, of zinc ores from zinc smelter were in the range of 1.179~1.198 and the ratio of waste, flue gas and products samples were 1.105~1.147. This results implied that the isotopic patterns of output samples showed mixing patterns between two distinct metal ore soerces. In 2011, major importing countries of zinc ore were Australia, Peru and Mexico. Thus Pb isotopic patterns from zinc smelter is originated from the mixing patterns between less radiogenic Australian ores and more radiogenic South America's ores. Lead smelters also showed the same mixing patterns with those of zinc smelters. However copper smelter showed same Pb isotopic patterns with more radiogenic South America's ores.