• Title/Summary/Keyword: Waste(s)

Search Result 2,789, Processing Time 0.033 seconds

Waste Management in the Era of Sustainable Development Goals : The EU's Plastics Strategy (SDGs시대의 폐기물관리 : EU의 플라스틱 전략)

  • Park, Sang-Woo
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.683-691
    • /
    • 2018
  • The plastic strategy adopted by the EU in January 2018 was established to implement circular economic policies and the Sustainable Development Goals(SDGs) of the United Nations. The strategy includes the vision and implementation measures to achieve, which are primarily measures to improve recycling and increase demand for recycled plastics. The representative measures include the design that considers recycling possibilities, reinforcement of demand for recycled plastics, suppression of occurrence, and response to micro-plastics. The policies to implement these measures include legislative restrictions and economic measures (EPR, GPP). It is especially desirable that the policies are applied differently depending on the plastic product. The Korean government has established comprehensive measures for all stages from production to recycling, but those measures are not comprehensive compared to the EU's strategy. The reason is that the refusal of waste collection makes the Korean government establish the approach from the aspect of waste management instead of the implementation of a circular economy or SDGs like the EU. The countermeasures are aimed at achieving a 50% reduction in waste generation amount and a 70% recycling rate. It is considered that the possibility of achieving the goal will increase by examining the measures and policy means in the EU's plastics strategy.

Illustration of Nagra's AMAC approach to Kori-1 NPP decommissioning based on experience from its detailed application to Swiss NPPs

  • Volmert, Ben;Bykov, Valentyn;Petrovic, Dorde;Kickhofel, John;Amosova, Natalia;Kim, Jong Hyun;Cho, Cheon Whee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1491-1510
    • /
    • 2021
  • This work presents an illustration of Nagra's AMAC (Advanced Methodology for Activation Characterization) approach to the South Korean pressurized water reactor Kori-1 decommissioning. The results achieved are supported by the existing experience from the detailed AMAC applications to Swiss NPPs and are used not only for a demonstration of the applicability of AMAC to South Korean NPPs, but also for a first approximation of the activated waste volumes to be expected from Kori-1. A packaging concept based on the above activation characterization is also presented, using the AMAC algorithmic optimization software ALGOPACK leading to the minimum number of waste containers needed given the selected packaging constraints. Nagra's AMAC enables effective planning before and during NPP decommissioning, including recommendations for cutting profiles for diverse reactor components and building structures. Finally, it is expected to lead to significant cost savings by reducing the number of expensive waste containers, by optimizing a potential melting strategy for metallic waste as well as by significantly limiting the number of radiological measurements. All information about Kori-1 used for the purpose of this study was collected from publicly available sources.

The Systematic Study on Reduction of Food Waste Products(I) -Survey on Waste Rates of Frequently Consumed Korean Foods and Effect of Education on Kitchen Wastes of Institutional Foodservices - (음식물 쓰레기를 줄이기 위한 체계화 연구(I) -상용식품의 폐기율 조사와 급식소의 유형별 음식물 쓰레기량과 교육에 의한 개선효과-)

  • 전예숙;최미경
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1999
  • This research was conducted to estimate waste rates of 69 food items after pre-preparation and amounts of food wastes disposed and it's reduction effect by education in some institutional foodservices for reduction of the food wastes. The result are as follows: 1. The waste rates were 55.40% for sweet corn, 5.73% for potatoes, 19.14% for sweet potatoes, and 33.47% for chestnuts. 2. The waste rates of fruits were 0.21-49.36%. Food items with over 40% waste rate were banana, watermelon, and pineapple. 3. The waste rates of vegetables were 1.14-52.90%. The number of foods with under 10% waste rate were 14 items(red pepper, green pepper, chard, and so on), 10-20% was 9 items(perilla leaf, chinese cabbage, ginger root, and so on), 20-30% was 5 items(root of chinese bellflower, garlic, radish-leaves, burdock, welsh onion-large type), 30-40% was 3 items(shepherd's purse, head lettuce, kale) and over 40% was 3 items(water dropwort, crown daisy, mallow). 4. The waste rates were 24.30% in chicken, 9.53-13.79% in eggs, and 9.30-55.32% in fishes. The waste rates of vegetables and fishes were higher than those of other food groups. 5. There were significantly different in amount of food wastes disposed (g/person/day) to institutional foodservices (hospital>industrial institution> Korean restaurant>elementary school). The amount of food wastes disposed, especially amount in pre-preparation phase, after education for reduction of food wastes was significantly reduced. Since these study results show significant deviations in food waste rates and education effect, there should be more studies for standard waste rates of each food and systematic education method for reduction of food wastes.

  • PDF

Preparation of Heating Fuel by the Recycling of High Viscosity Waste Oil (고점도 폐유의 재활용에 의한 난방연료 제조)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • To replace waste oil with the lowest grade which has high viscosity into heating fuel, light oil and buncker C oil in waste oil was used and the fuel characteristic was analyzed by its concentration after mixing oil. The mixture conditions were controlled by the reaction time (30 s~30 min) and kept by the reaction temperature ($75{\pm}5^{\circ}C$) when mixing speed was stirred at 3400~3600 rpm. We used the buncker C oil and light oil to decrease viscosity of waste oil and the dynamic viscosity was decreased by 81~96%. Optimum mixing ratio (waste oil : buncker C oil : light oil) as heating fuel was 1 : 1 : 1. Flash point, dynamic viscosity and heating value of this case were identified $78^{\circ}C$, $20.02mm^{2}/s$, 9158 kcal/L respectively.

A unique Vietnam's red clay-based brick reinforced with metallic wastes for γ-ray shielding purposes: Fabrication, characterization, and γ-ray attenuation properties

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1544-1551
    • /
    • 2024
  • A unique brick series based on Vietnamese clay was manufactured at 114.22 MPa pressure rate for γ-ray attenuation purposes, consisting of (x) metallic waste & (90%-x) red clay mineral & 10% (hardener mixed with epoxy resin), where (x) is equal to the values 0%, 20%, 40%, 50%, and 70%. The impacts of industrial metal waste ratio in the structure and radiation protective characteristics were evaluated experimentally. The increase in metallic waste doping concentrations from 0% to 70% was associated with an increase in the manufactured brick's density (ρ) from 2.103 to 2.256 g/cm3 while the fabricated samples' porosity (Φ) decreased from 11.7 to 1.0%, respectively. Together with a rise in fabricated brick's density and a decrease in their porosities, the manufactured bricks' γ-ray attenuation capacities improved. The measured linear attenuation coefficient (μ, cm-1) was improved by 30.8%, 22.1%, 21.6%, and 19.7%, at Eγ equal to the values respectively 0.662, 1.173, 1.252, and 1.332 MeV, when the metallic waste concentration increased from 0% to 70%, respectively. The study demonstrates that manufactured bricks exhibit superior radiation shielding properties, with radiation protection efficiencies of 88.4%, 90.0%, 91.7%, 92.1%, and 92.4% for bricks with industrial metal waste contents of 0%, 20%, 40%, 50%, and 70%, respectively, at γ-ray energy (Eγ) of 1.332 MeV.

A Study on Waste Discharge Characteristics and Disposal Policy of Jeju (제주지역 폐기물 배출처리 특성과 정책에 대한 소고)

  • Hwang, Seok-Joon;Hwang, Uk;Kim, Hyuncheol
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.627-639
    • /
    • 2018
  • Waste management in Jeju Province, Korea, has recently emerged as an urgent problem. The increasing waste discharge requires more landfills but, since it is an island, the available land is restricted. Accordingly, an efficient waste management urgently requires environmentally sustainable policies. In this article, the waste discharge characteristics (such as the amount of waste, its composition, etc.) of Jeju Province have been compared with those in the rest of Korea. The current industrial waste management of two cities on the Island, Jeju City and Seogwipo City, has been also analyzed to suggest policies for an efficient management. The local government's endeavor to enhance environmental awareness of the community has been known to reduce the private cost of policy compliance, and have individuals recognize the results of their policy compliance. Policies to achieve the above are then proposed.

A Study on the Evaporation of Radioactive Liquid Waste (방사성(放射性) 폐액(廢液)의 자연증발(自然蒸發)에 관한 연구(硏究))

  • Kang, I.S.;Kim, T.K.;Yoo, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1993
  • The performance of the evaporation facility of low radioactive liquid waste is studied experimentally. The evaporation facility comprises storage pools, feeding pumps, evaporation units with 1,040 sheets of cloth and air handling units. As the results of this study, it is found that the evaporation rate increases as the waste feed rate increases, the relative humidity of induced air decreases, and the air velocity increases. The modified Dalton's evaporation equation derived from experimental data is $E_h=(0.0168+0.0141V){\Delta}H$. The optimum operating conditions of the evaporation facility are waste feed rate of $4.5./hr.m^2$ and air velocity of 1.47m/sec.

  • PDF