Comparison of Radiolytic Decomposition of Oxidation Decontamination Solutions

N.O. Chang^{1,2}, H.J. Won^{1*}, S.Y. Park¹, S.B. Kim¹, and Y.S. Kim²

¹Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Korea

²Department of Nuclear Engineering, Hanyang University, 222Wangsimri-ro, Seongdong-gu, Seoul, Korea

* nhjwon@kaeri.re.kr

1. Introduction

Before decommissioning, it is necessary to remove the radionuclides in the primary system of NPP. To remove it, HyBRID(Hydrazine-Base Reductive metal Ion Decontamination) chemical decontamination process developed by KAERI can be used. It consists of SP or SP(Cu) oxidizing and reducing process. In each process, the control of KMnO₄ or N₂H₄ concentration is important for removing oxide layer. However, permanganate ion and hydrazine decompose under the high radiation field during the decontamination. In this study, the radiolytic products of KMnO₄ are analyzed. Also, the results are compared with results of N₂H₄.

2. Methods and Results

2.1 Sample preparation and γ -ray irradiation

SP oxidizing decontamination agent was prepared with 6.33 mM KMnO₄ and 3.25 mM H₂SO₄. SP(Cu) agent was made of 6.33 mM KMnO₄, 3.25 mM H₂SO₄, and 0.5 mM CuCl₂. The absorbed doses of the samples were 0, 5, 10, 20, 40 and 80 kGy, respectively by using low-dose γ -ray irradiator of jeongeup.

2.2 Comparison of radiolytic decomposition Between SP and SP(Cu)

To analyze concentration of $[KMnO_4]$, UV analysis method(UV spectrometer DR5000 of Hach Co.) was used. The amount of MnO_2 was calculated

using relation of concentration of total manganese and [KMnO₄]. AA analysis(AAnalyst 400 of Perkin Elmer Co.) was used to analyze [Mn^{2+}]. The concentration change of each species against absorbed dose is shown in Fig. 1.

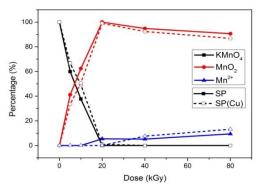


Fig. 1. Concentration change of KMnO₄, MnO₂, and Mn²⁺.

As shown Fig. 1, it can be explained that $[KMnO_4]$ decreases due to the reaction between MnO_4^- and radiolysis products of the water($\dot{O}H$, e_{aq}^- , etc.). After this reaction, $MnO_4^{2^-}$ is produced. $MnO_4^{2^-}$ reacts with H⁺ rapidly and generates MnO_2 because it is unstable in acidic condition. After KMnO_4 is completely decomposed, MnO_2 reacts with e_{aq}^- and produce Mn^{2+} and OH⁻ [1]. However, as listed in Table 1, KMnO_4 in the SP agent decomposes but it remains in the SP(Cu) at 20 kGy. This can be explained by the eqs. (1) and (2) [2].

$$H^{+} + Cu^{2+} + \dot{O}H \rightarrow Cu^{3+} + H_2O$$
 (1)

$$e_{aq}^- + Cu^{2+} \to Cu^+ \tag{2}$$

As Cu^{2+} ion reacts with H^+ or e_{aq}^- in an acidic condition, the probabilities of reaction between MnO_4^{2-} and H^+ , and MnO_2 and e_{aq}^- decrease. Thus, SP(Cu) agent is expected to be more stable than SP agent in the radiation field.

	U	e	1
Absorbed		KMnO ₄	KMnO ₄
dose(kGy)		in SP(%)	in SP(Cu)(%)
0		100.0	100.0
5		59.0	66.6
10		37.7	49.3
20		0.0	1.0
40		0.0	0.0
80		0.0	0.0

Table 1. Percentage change of $KMnO_4$

2.3 Comparison of radiolysis between oxidizing and reducing decontamination agent

In the previous study, it is founded that radiolysis of N_2H_4 depends on existence of Cu^{2+} ions [3]. The result is shown in the Fig. 2.

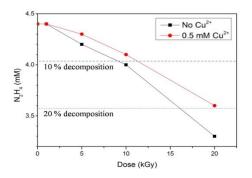


Fig. 2. Decomposition of [N₂H₄] under varied doses [3].

As shown in the Fig. 2, when Cu^{2+} ions are added, less N_2H_4 decomposes at the same absorbed dose. This phenomenon is similar to the [KMnO₄] change in the oxidizing decontamination agent.

3. Conclusions

KMnO₄ in the oxidizing decontamination agent decomposes during the γ -ray irradiation. SP(Cu) agent has higher stability than SP under the radiation field. The reason is explained by the reaction between Cu^{2+} ions and H^+ or e_{aq}^- . This phenomenon also occurs in the reducing decontamination agent N₂H₄. However, when high absorbed dose is irradiated, KMnO₄ decomposes completely regardless of presence of Cu^{2+} ions. Thus, it is necessary to estimate the absorbed dose of KMnO₄ during the decontamination and to decide the application times. It is also necessary to study the effect of other metal ions on the radiation stability of KMnO₄.

ACKNOWLEDGMENT

This work has been carried out under the Nuclear R&D Program (NRF-2017M2A8A5015144) funded by Ministry of Science and ICT.

REFERENCES

- R. Puspalata et al, "Gamma radiation induced formation and characterization of the nano-oxides of manganese", Radiation Physics and Chemistry, 85, 142-160 (2013).
- [2] Paul Y. Feng et al, "High-Intensity Radiolysis of Aqueous Ferrous Sulfate-Cupric Sulfate-Sulfuric Acid Solutions", The Journal of Physical Chemistry, 74(6), 1221-1227 (1970).
- [3] Wang-Kyu Choi et al., "Development of Advanced Decontamination Technology for Nuclear Facilities", KEARI/RR-3964/2014 (2015).