• Title/Summary/Keyword: Warning algorithm

Search Result 219, Processing Time 0.028 seconds

A Study on Rear Lateral Collision Warning System of Vehicle using Fuzzy Control Algorithms (퍼지 제어 알고리즘을 이용한 차량 후측방 충돌 경보 시스템)

  • Kim, Byung-Ki;Han, Seung-Chul;Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.73-85
    • /
    • 2007
  • The rear lateral collision warning system using fuzzy control algorithms is discussed in this paper. Common rear lateral warning system has many problems. For example if target vehicle comes into the warning area, it must unconditionally warn. Drivers could be interrupted by it. To solve the problem, I divided measuring area into two sections. One section is blind area of vehicle and the other rear lateral area. For blind area, obtained data was filtered inefficient warning signal by using relative velocity method. For rear lateral area, a fuzzy logic algorithm is used to recognition of obstacles. According to our experiment relative velocity method and fuzzy logic algorithms were very efficient.

Power Quality Early Warning Based on Anomaly Detection

  • Gu, Wei;Bai, Jingjing;Yuan, Xiaodong;Zhang, Shuai;Wang, Yuankai
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1171-1181
    • /
    • 2014
  • Different power quality (PQ) disturbance sources can have major impacts on the power supply grid. This study proposes, for the first time, an early warning approach to identifying PQ problems and providing early warning prompts based on the monitored data of PQ disturbance sources. To establish a steady-state power quality early warning index system, the characteristics of PQ disturbance sources are analyzed and summed up. The higher order statistics anomaly detection (HOSAD) algorithm, based on skewness and kurtosis, and hierarchical power quality early warning flow, were then used to mine limit-exceeding and abnormal data and analyze their severity. Cases studies show that the proposed approach is effective and feasible, and that it is possible to provide timely power quality early warnings for limit-exceeding and abnormal data.

Early Warning System for Inventory Management using Prediction Model and EOQ Algorithm

  • Majapahit, Sali Alas;Hwang, Mintae
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2021
  • An early warning system was developed to help identify stock status as early as possible. For performance to improve, there needs to be a feature to predict the amount of stock that must be provided and a feature to estimate when to buy goods. This research was conducted to improve the inventory early warning system and optimize the Reminder Block's performance in minimum stock settings. The models used in this study are the single exponential smoothing (SES) method for prediction and the economic order quantity (EOQ) model for determining the quantity. The research was conducted by analyzing the Reminder Block in the early warning system, identifying data needs, and implementing the SES and EOQ mathematical models into the Reminder Block. This research proposes a new Reminder Block that has been added to the SES and EOQ models. It is hoped that this study will help in obtaining accurate information about the time and quantity of repurchases for efficient inventory management.

Development of an Early Warning System based on Artificial Intelligence (인공지능기법을 이용한 외환위기 조기경보시스템 구축)

  • Kwon, Byeung-Chun;Cho, Nam-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.319-326
    • /
    • 2012
  • To effectively predict financial crisis, this paper presents an early warning system based on artificial intelligence technologies. Both Genetic Algorithms and Neural Networks are utilized for the proposed system. First, a genetic algorithm has been developed for the effective selection of economic indices, which are used for monitoring financial crisis. Then, an optimum weight of the selected indices has been determined by a neural network method. To validate the effectiveness of the proposed system, a series of experiments has been conducted by using the Korean economic indices from 2005 to 2008.

An Application of Computer Vision and Laser Radar to a Collision Warning System (자동차 추돌경보 시스템 개발을 위한 컴퓨터 비젼과 레이저 레이다의 응용)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.258-267
    • /
    • 1999
  • An intelligent safety vehicle(ISV) should have an ability to predict the possibility of an accident and help a driver avoid the accident in advance. The basic function of the ISV is to alert the driver by warning when the collision is to occur. For this purpose, the ISV has to function efficiently in sensing the environmental context. While image processing provides lane information, laser radar senses road obstacles including vehicles. By applying a simple clustering algorithm to radar signals, it is possible to obtain the vehicle information. Consequently, we can identify the existence of the vehicle of interest on my lane. The reliability of the sensing algorithm is evaluated by running on the highway with a test vehicle.

  • PDF

Motion Object Detection Based Hagwon-Bus Boarding Danger Warning System (움직임 물체 검출 기반 학원 통학차량 승하차 위험 경고 시스템)

  • Song, Young-Chul;Park, Sung-Ryung;Yang, Seung-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.810-812
    • /
    • 2014
  • In this paper, a hagwon-bus boarding danger warning system based on computer vision is proposed to protect children from an accident causing injuries or death. Three zones are defined and different algorithms are applied to detect moving objects. In zone 1, a block-based entropy value is calculated using the absolute difference image generated by the absolute differential estimation between background image and incoming video frame. In zone 2, an effective and robust motion object tracking algorithm is performed based on the particle filter. Experimental results demonstrate the efficient and effectively of the algorithm for moving object inspection in each zone.

Enhancement Algorithm of Panoramic Thermal Imaging Warning System for Small Target Detection (소형 표적 탐지를 위한 파노라믹 적외선 영상 개선 알고리즘)

  • Kim, Gi-Hong;Jeon, Byeong-Gyun;Kim, Ju-Yeong;Kim, Deok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.400-403
    • /
    • 2003
  • This paper presents the signal processing of the panoramic thermal warning system that detects the small target such as aircraft and helicopter from afar. We develope the all round looking thermal imaging system which can scan all the way. This system acquires the panoramic images to reconstruct the IR images by revolving head of sensor typed line sensor at high speed. For detection, where the object of interest may be small, it is sometimes difficult to specify from object and background by conventional contrast enhancement methods. Therefore we use the adaptive plateau equalization algorithm each region to improve the contrast and make the hardware system which consists of the signal processing board for real-time display. We can verify the proposed method by the computer simulation and the hardware implementation.

  • PDF

Implementation of Lane Departure Warning System using Lightweight Deep Learning based on VGG-13 (VGG-13 기반의 경량화된 딥러닝 기법을 이용한 차선 이탈 경고 시스템 구현)

  • Kang, Hyunwoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.860-867
    • /
    • 2021
  • Lane detection is important technology for implementing ADAS or autonomous driving. Although edge detection has been typically used for the lane detection however, false detections occur frequently. To improve this problem, a deep learning based lane detection algorithm is proposed in this paper. This algorithm is mounted on an ARM-based embedded system to implement a LDW(lane departure warning). Since the embedded environment lacks computing power, the VGG-11, a lightweight model based on VGG-13, has been proposed. In order to evaluate the performance of the LDW, the test was conducted according to the test scenario of NHTSA.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Lane Detection System Based on Vision Sensors Using a Robust Filter for Inner Edge Detection (차선 인접 에지 검출에 강인한 필터를 이용한 비전 센서 기반 차선 검출 시스템)

  • Shin, Juseok;Jung, Jehan;Kim, Minkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.164-170
    • /
    • 2019
  • In this paper, a lane detection and tracking algorithm based on vision sensors and employing a robust filter for inner edge detection is proposed for developing a lane departure warning system (LDWS). The lateral offset value was precisely calculated by applying the proposed filter for inner edge detection in the region of interest. The proposed algorithm was subsequently compared with an existing algorithm having lateral offset-based warning alarm occurrence time, and an average error of approximately 15ms was observed. Tests were also conducted to verify whether a warning alarm is generated when a driver departs from a lane, and an average accuracy of approximately 94% was observed. Additionally, the proposed LDWS was implemented as an embedded system, mounted on a test vehicle, and was made to travel for approximately 100km for obtaining experimental results. Obtained results indicate that the average lane detection rates at day time and night time are approximately 97% and 96%, respectively. Furthermore, the processing time of the embedded system is found to be approximately 12fps.