• Title/Summary/Keyword: Warning Intensity

Search Result 61, Processing Time 0.023 seconds

New Vehicle Collision Warning Algorithm Based On Fuzzy Logic (퍼지 논리에 기반한 차량 충돌 경보 알고리듬)

  • 김선호;오세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

An improvement on the Criteria of Special Weather Report for Heavy Rain Considering the Possibility of Rainfall Damage and the Recent Meteorological Characteristics (최근 기상특성과 재해발생이 고려된 호우특보 기준 개선)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon;Yoo, Hee-Dong;Jin, Gee-Beom
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.481-495
    • /
    • 2011
  • This study is performed to consider the threshold values of heavy rain warning in Korea using 98 surface meteorological station data and 590 Automatic Weather System stations (AWSs), damage data of National Emergency Management Agency for the period of 2005 to 2009. It is in need to arrange new criteria for heavy rain considering concept of rainfall intensity and rainfall damage to reflect the changed characteristics of rainfall according to the climate change. Rainfall values from the most frequent rainfall damage are at 30 mm/1 hr, 60 mm/3 hr, 70 mm/6 hr, and 110 mm/12 hr, respectively. The cumulative probability of damage occurrences of one in two due to heavy rain shows up at 20 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 110 mm/12 hr, respectively. When the relationship between threshold values of heavy rain warning and the possibility of rainfall damage is investigated, rainfall values for high connectivity between heavy rain warning criteria and the possibility of rainfall damage appear at 30 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 100 m/12 hr, respectively. It is proper to adopt the daily maximum precipitation intensity of 6 and 12 hours, because 6 hours rainfall might be include the concept of rainfall intensity for very-short-term and short-term unexpectedly happened rainfall and 12 hours rainfall could maintain the connectivity of the previous heavy rain warning system and represent long-term continuously happened rainfall. The optimum combinations of criteria for heavy rain warning of 6 and 12 hours are 80 mm/6 hr or 100 mm/12 hr, and 70 mm/6 hr or 110 mm/12 hr.

Flood Alert and Warning Scheme Based on Intensity-Duration-Quantity (IDQ) Curve considering Antecedant Moisture Condition (선행함수지수를 고려한 강우강도-지속시간-홍수량(IDQ) 곡선기반의 홍수예경보기법)

  • Kim, Jin-Gyeom;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1269-1276
    • /
    • 2015
  • The methodology of utilizing Intensity-Duration-flood Quantity (IDQ) curve for flood alert and warning was introduced and its performance was evaluated. For this purpose the lumped parameter model was calibrated and validated for gauged basin data set and the index precipitation equivalent to alert and warning flood was estimated. The index precipitation and IDQ curves associated by three different Antecedant Moisture Conditions (AMCs) are made provision for various possible flood scenarios. The test basin is Wonju-cheon basin ($94.4km^2$) located in Gangwon province, Korea. The IDQ curves corresponding to alert (50% of design flood level) and warning (70% of design flood level) level was estimated using the Clark unit hydrograph based lumped parameter model. The performance evaluation showed 0.704 of POD (Probability of Detection), 0.136 of FAR (False Alarm Ratio), and 0.633 of CSI (Critical Success Index), which is improved from the result of IDQ with single fixed AMC.

Design of an Optical System for a Medium Luminous-Intensity Aircraft-Warning Light Using a LED Light Source and a Fresnel Lens (LED 광원과 프레넬 렌즈를 이용한 중광도 항공장애등 광학계 설계)

  • Park, Hyeon Joon;Choi, Seong Won;Kim, Jong Tae
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • Aircraft-warning lights are lights that are used to inform pilots in flight about the presence of buildings or dangerous objects. Currently, the light sources of most aircraft-warning lights have been replaced by light-emitting diodes (LEDs). However, the aircraft-warning lights that are installed do not meet the optical performance standards and may cause airplane collisions. Therefore, the use of such light poses a risk to aviation safety. In order to solve this problem, we designed a Fresnel lens with the same luminous intensity distribution ovef $360^{\circ}$ direction; thus, we collimated the light beam from the LED light source with a narrow beam divergence angle in the form of an array of aspheric pieces. After that, we designed and simulated an aircraft-warning-light optical system with a center luminous intensity of 20,000 cd and a vertical divergence angle of $3^{\circ}$ or more by optimizing the lens' tilt and the distance between the LED and the Fresnel lens.

A Study of Lens Design for LED Warning Light (LED 경광등 글로브 렌즈 설계에 관한 연구)

  • Shin, Kyung-Ho;Lim, Sung-Moo;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1912-1914
    • /
    • 2004
  • As the characteristics of LED disposition, LED warning light must be designed differently from general incandescent lamp warning light whose light source is located in origin. In this paper, the globe's lens of LED warning light was designed considering the LED intensity distribution and the arrangement of the LED. And prove the appropriateness of that design by simulation in LightTools which is optical design program.

  • PDF

Optimization of the Optical System for an Aircraft Warning Light Using a Fresnel Lens (프레넬 렌즈를 이용한 항공장애등 광학계 최적 설계)

  • Kim, Jong-Tae;Park, Hyeon-Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • In this paper, an aircraft warning light's optical system was designed using an LED light-source module and a collimating Fresnel lens. As for the optical system, a collimator Fresnel lens was designed for each module to satisfy a vertical-elevation center luminous intensity of 20,000 cd and the divergence-angle luminous-intensity standard conditions of the Ministry of Land for Infrastructure and Transport for aircraft warning lights. In addition, the optical system was optimized by adjusting the position and tilt of the LED light-source module and Fresnel lens. By analyzing and comparing the light-distribution characteristics of the optical system, an aircraft-warning-light optical system with optimal performance was obtained.

A Study on Development of the Lightning Warning System (뇌운경보장치 개발에 관한 연구)

  • Kil Gyung-Suk;Song Jae-Yong;Kim Il-Kwon;Moon Seung-Bo;Cha Myung-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.274-277
    • /
    • 2006
  • This paper describes a lighting warning system (LWS) which consists of a corona needle electrode, a low noise differential amplifier, an A/D converter, an one-chip microprocessor, a LCD and alarm devices. The corona needle electrode is used to measure electric field intensity caused by thunderclouds on the ground level. To evaluate the sensitivity of the LWS, calibration experiment was carried out using a round-shape parallel plate electrode system. The theoretical and experimental results show that the LWS can measure electric field intensity over 2 [kV/m].

  • PDF

Affective Design of Warning Sounds used in Windows Operating Systems (윈도우즈 운영체제를 중심으로 한 경고음의 감성공학적 설계)

  • Hong, Seung W.;Jung, Eui S.;Park, Sungjoon;Choi, Dong S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.259-270
    • /
    • 2003
  • In order to properly design warning sounds that are affectively suitable to computer users, warning sounds used in Windows operating system were analyzed in terms of their sound properties; frequency band, spectral characteristics and physical intensity. A total of 36 warning sounds (3*4*3) were generated and tested with respect to three experimental variables. Among 178 collected affective adjectives that are related to hearing and sounds, seven representative affective adjectives were abstracted by statistical grouping techniques. In the experiment, subjective preference tests were performed for the 36 warning sounds according to the seven affective factors. From the result, the affective factors were again grouped into three major factors and the 60dB boost-type warning sounds at the low frequency band were, in general, the most preferred. followed by the 70dB cut-type sounds at the middle frequency band. These warning sounds have a characteristic of boost power spectrum below 1000Hz frequency band and received good scores on simplicity, clarity and accurateness.

A Feasibility Study of a Rainfall Triggeirng Index Model to Warn Landslides in Korea (산사태 경보를 위한 RTI 모델의 적용성 평가)

  • Chae, Byung-Gon;Choi, Junghae;Jeong, Hae Keun
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.235-250
    • /
    • 2016
  • In Korea, 70% of the annual rainfall falls in summer, and the number of days of extreme rainfall (over 200 mm) is increasing over time. Because rainfall is the most important trigger of landslides, it is necessary to decide a rainfall threshold for landslide warning and to develop a landslide warning model. This study selected 12 study areas that contained landslides with exactly known triggering times and locations, and also rainfall data. The feasibility of applying a Rainfall Triggering Index (RTI) to Korea is analyzed, and three RTI models that consider different time units for rainfall intensity are compared. The analyses show that the 60-minute RTI model failed to predict landslides in three of the study areas, while both the 30- and 10-minute RTI models gave successful predictions for all of the study areas. Each RTI model showed different mean response times to landslide warning: 4.04 hours in the 60-minute RTI model, 6.08 hours in the 30-minute RTI model, and 9.15 hours in the 10-minute RTI model. Longer response times to landslides were possible using models that considered rainfall intensity for shorter periods of time. Considering the large variations in rainfall intensity that may occur within short periods in Korea, it is possible to increase the accuracy of prediction, and thereby improve the early warning of landslides, using a RTI model that considers rainfall intensity for periods of less than 1 hour.

Thresholds of Rainfall Duration and Intensity for Predicting Abrupt Landslide Occurrence (돌발 산사태 예·경보를 위한 강우기준 설정 연구)

  • Kim, Seong-Pil;Park, Jae-Sung;Bae, Seung-Jong;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • The objective of this study is to suggest rainfall threshold for landslide forecasting and warning. For this study, we chose the research area where landslide have occurred. And we performed infiltration-stability analysis with rainfall intensity-duration. As the results of this study, slope stability variation chart with rainfall intensity-duration are established. This kind of chart is believed to be able to be used for forecasting and warning the landslide caused by rainfall.