• Title/Summary/Keyword: Wall-Thinned Piping

Search Result 44, Processing Time 0.025 seconds

Structural Integrity and Safety Margin Evaluation for Thinned Pipe Component (감육배관의 구조건전성 및 안전여유도 평가 기술)

  • Lee, Sung-Ho;Kim, Tae-Ryong;Kim, Bum-Nyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.264-267
    • /
    • 2004
  • Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle piping systems in Nuclear Power Plants (NPP). Since the mid-1990s, secondary side piping systems in Korean NPPs have experienced wall thinning, leakages and ruptures caused by FAC. Korea Electric power Research Institute (KEPRI) and Korea Hydro & Nuclear Power Co., LTD. (KHNP) have conducted a study to develop the methodology for systematic pipe management and established the Korean Thinned Pipe Management Program (TPMP). To effectively maintain the integrity of piping system, FAC engineer should understand the criterions of the structural integrity evaluation and the safety margin assessment for the thinned pipe component. This paper describes the technical items of TPMP, and shows the example of the integrity evaluation and safety margin assessment for three thinned pipe component of a NPP.

  • PDF

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

A Stress Analysis of Wall-Thinned Feedwater Ring in Nuclear Power Plant (원전 증기발생기 감육 급수링 응력해석)

  • Min Ki Cho;Ki Hyun Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2021
  • The feedwater ring is an assembly in steam generator internal piping, which distributes feedwater into the secondary side of the steam generator. It consists of an assembly of carbon steel piping, pipe fittings and J-nozzles which are inserted into the top of the feedwater ring and welded to the diameter of the ring. The feedwater ring at the attachment region of the J-nozzle may be susceptible to flow accelerated corrosion (FAC) due to flow turbulence which increases local fluid velocities. If a J-nozzle becomes a loose part, it can cause damage to tubing near the tube sheet. In this paper, the structural stress analysis for a wall thinned feedwater ring and integrity evaluations under assumed loading conditions are carried out in compliance with ASME B&PV SecIII, NB-3200.

Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation (신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Evaluation of the Burst Pressure for Rectangular Wall-thinning of CANDU Feeder Pipe (사각 감육을 고려한 중수로 공급자관 파열압력 평가)

  • Kwang Soo Kim;Min Kyu Kim;Doo Ho Cho;Jae Joon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The flow accelerated corrosion (FAC) is one of significant aging and degradation mechanism and can affect structural integrity of CANDU feeder pipes. Pipe burst can occur under normal operation pressure (min. 10 MPa) if wall-thinning of the feeder pipe due to FAC is accumulated. Previous studies considered simple shapes of feeder pipe with local wall-thinning in order to conservatively assess structural integrity of wall-thinned feeder pipe. In this paper, a new FE model is developed, having an actual shape of the feeder pipe (double bent) as well as the actual wall-thinning shape and location based on the in-service inspection result. Then, the burst pressure assessment of the wall-thinned feeder pipe is performed using lower bound limit load analysis considering elastic-perfectly plastic material. In addition, an improved formulation to predict the burst pressure of the wall-thinned feeder pipe is presented and the safety margin is compared with an existing assessment method.

Effect of Local Wall Thinning on Pipe Elastic Bending Compliance (국부 감육이 배관 굽힘 컴플라이언스에 미치는 영향 )

  • Ki-Wan Seo;Jae-Min Gim;Yun-Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • The thickness of pipe can be locally reduced during operation due to wall thinning. Due to its significance on structural integrity, many non-destructive detecting techniques and assessment methods are available. In this study, the elastic bending compliance of local wall-thinned pipe is presented in terms of the wall thinning geometry: wall thinning depth, circumferential angle and longitudinal length. Elastic finite element (FE) analysis further shows that the presented equation can be used for any wall thinning shape. The proposed solution differs from FE results by less than 6% for all cases analyzed. The bending compliance increases linearly with increasing longitudinal thinning length and non-linearly with increasing thinning angle and depth.

Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment (내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor (부분안전계수를 이용한 감육배관의 신뢰도 기반 건전성 평가)

  • Lee, Jae-Bin;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.518-524
    • /
    • 2013
  • Recently, probabilistic assessments of nuclear power plant components have generated interest in the nuclear industries, either for the efficient inspection and maintenance of older nuclear plants or for improving the safety and cost-effective design of newly constructed nuclear plants. In the present paper, the partial safety factor (PSF) of wall-thinned nuclear piping is evaluated based on a reliability index method, from which the effect of each statistical variable (assessment parameter) on a certain target probability is evaluated. In order to calculate the PSF of a wall-thinned pipe, a limit state function based on the load and resistance factor design (LRFD) concept is first constructed. As for the reliability assessment method, both the advanced first-order second moment (AFOSM) method and second-order reliability method (SORM) are employed to determine the PSF of each probabilistic variable. The present results can be used for developing maintenance strategies considering the priorities of input variables for structural integrity assessments of wall-thinned piping, and this PSF concept can also be applied to the optimal design of the components of newly constructed plants considering the target reliability levels.

Wall Thinning Analyses for Secondary Side Piping of Domestic NPPs Using CHECWORKS Code (CHECWORKS 코드를 이용한 국내 원전 2차계통 배관감육 해석)

  • Hwang, K.M.;Jin, T.E.;Lee, S.H.;Kim, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.807-812
    • /
    • 2001
  • This paper represents the wall thinning analysis results for secondary side piping of two types of domestic nuclear power plants based on the DB establishment and F AC analysis study for NPP secondary system piping. CHECWORKS code utilized in this study has been applied world widely to wall thinning analyses for secondary side piping and its reliability has also been proved. The predicted wear rates for several piping systems of a pressurized water reactor NPP are compared with those of a pressurized heavy water reactor NPP and with the measured wear rates. On the basis of comparison results of the predicted and measured wear rates, the analysis results can be effectively applied to the development of a standard thinned pipe management program targeted all domestic nuclear power plants.

  • PDF