• Title/Summary/Keyword: Wall thinning pipe

Search Result 141, Processing Time 0.028 seconds

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

Determination of an Test Condition for IR Thermography to Inspect a Wall-Thinning Defect in Nuclear Piping Components (원전 배관 감육 결함 검사를 위한 IR 열화상시험 조건 결정)

  • Kim, Jin-Weon;Yun, Won-Kyung;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • This study conducted infrared (IR) thermography tests using pipe and plate specimens with artificial wall-thinning defects to find an optimal condition for IR thermography test on the wall-thinned nuclear piping components. In the experiment halogen lamp was used to heat the specimens. The distance between the specimen and the lamp and the intensity of halogen lamp were regarded as experimental parameter. When the distance was set to 1~2 m and the lamp intensity was above 60 % of full power, a single scanning of IR thermography detected all artificial wall-thinning defects, whose minimum dimension was $2{\Theta}=90^{\circ}$, d/t=0.5, and $L/D_o=0.25$, within the pipe of 500 mm in length. Regardless of the distance between the specimen and the lamp, the image of wall-thinning defect in IR thermography became distinctive as the intensity of halogen lamp increased. The detectability of IR thermography was similar for both plate and pipe specimens, but the optimal test condition for IR thermography depended on the type of specimen.

Effect of Local Wall Thinned Location due to Erosion-Corrosion on Fracture Behavior of Pipes (침식-부식에 의해 감육된 배관의 파손거동에 미치는 감육위치의 영향)

  • Ahn, Seok-Hwan;Seok, Kum-Cheol;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.51-58
    • /
    • 2007
  • This study on the effects of local wall-thinned location on the fracture behavior of pipes was carried out, and the results were compared with the analytical results. Local wall-thinning for the bending test was machined with various sizes on the outside of pipes, in order to simulate the metal loss, due to erosion/corrosion. In addition, we had carried out FE analysis for the pipes with local wall thinning on the inside, and its results were comparatively studied with that of the outside. Three-dimensional elasto-plastic analyses were able to accurately simulate fracture behaviors of inner or outer wall thinning. Fracture types, obtained from the experiments and analyses, could be classified into ovalization, local buckling and crack initiation, depending on the thinned length and thinned ratio. Based on the results, the fracture behaviors of pipes with the outer wall thinning can be applied to estimate the fracture behaviors of pipes with the inner wall thinning.

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

Structural Integrity and Safety Margin Evaluation for Thinned Pipe Component (감육배관의 구조건전성 및 안전여유도 평가 기술)

  • Lee, Sung-Ho;Kim, Tae-Ryong;Kim, Bum-Nyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.264-267
    • /
    • 2004
  • Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle piping systems in Nuclear Power Plants (NPP). Since the mid-1990s, secondary side piping systems in Korean NPPs have experienced wall thinning, leakages and ruptures caused by FAC. Korea Electric power Research Institute (KEPRI) and Korea Hydro & Nuclear Power Co., LTD. (KHNP) have conducted a study to develop the methodology for systematic pipe management and established the Korean Thinned Pipe Management Program (TPMP). To effectively maintain the integrity of piping system, FAC engineer should understand the criterions of the structural integrity evaluation and the safety margin assessment for the thinned pipe component. This paper describes the technical items of TPMP, and shows the example of the integrity evaluation and safety margin assessment for three thinned pipe component of a NPP.

  • PDF

Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping (탄소강배관 다중 UT 측정두께를 활용한 감육여부 판별법 개발)

  • Hwang, Kyeong Mo;Yun, Hun;Lee, Chan Kyoo
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E&C and the other methods suggested by EPRI.

Round Robin Test for Reliability Evaluation of Ultrasonic Thickness Measurement Results in Nuclear Power Plant Pipelines (원전감육배관 UT 두께측정 결과의 신뢰도 평가를 위한 다자비교시험)

  • Lee, Seung-Joon;Yi, Won-Geun;Lee, Joon-Hyun;Lee, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1702-1707
    • /
    • 2007
  • The reduction of pipe-thickness induced by flow accelerated corrosion (FAC) is one of the most serious problems on the maintenance of piping system in nuclear power plants (NNP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain pressure and consequently results in leakage or rupture. For this reason, wall thinning by FAC has been inspected in secondary side piping systems in NPPs. In this research Round Robin Test (RRT) was conducted to verify confidence of wall thinning measurement system in NPP. 12 inspectors from 3 companies participated and 23 specimens were used according to standard practice in RRT. The gage R&R analysis was introduced in regard to repeatability and reproducibility that are affected to measurement system errors. Confidence intervals of thickness measurement system were obtained.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

Development of Failure Pressure Evaluation Model for Local Wall-Thinned Elbows Based on Finite Element Analysis (유한요소해석에 기초한 감육곡관 손상압력 평가 모델 개발)

  • Kim, Jin-Weon;Park, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper provides a failure pressure evaluation model for local wall-thinned elbows. In this study, parametric finite element analyses are performed on the elbows containing local wall-thinning defect at their intrados and extrados, and the failure pressures are obtained from the analysis results by applying a local failure criterion that was validated by real-scale pipe tests. An evaluation model including the effects of thinning depth, length, circumferential angle, thinning location, and elbow geometries on the failure pressure is derived based on the evaluated failure pressures. The proposed model agrees well with the results of finite element analyses and reasonably estimates the dependence of failure pressure on the wall-thinning dimensions and elbow geometries. Also, the comparison with experimental data demonstrates that the proposed evaluation model can accurately predict the failure pressure of local wall-thinned elbows.