• Title/Summary/Keyword: Wall thickness

Search Result 1,558, Processing Time 0.027 seconds

Study on the Effect of Gas Pressure on Bottle Wall Thickness in the Blow Molding Process (블로우 몰딩 공정에서 분사 압력이 성형 두께에 미치는 영향에 관한 연구)

  • Kim, Dong-Hwan;Seol, Sang-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.36-44
    • /
    • 2020
  • This study analyzed the deformation behavior of the high density polyethylene (HDPE) bottle in the blow molding process. We carried out finite element (FE) simulations using ANSYS Polyflow. First, the axisymmetric model was executed by 2D FE-simulation to determine the change of bottle wall thickness during the molding process. Then, the square model of the bottle was executed by 3D FE-simulation to gauge the effects of gas pressure on the change of wall thickness. The experiment results showed that the FE-simulations were able to upgrade the quality of the HDPE bottle in the blow molding process. These results can be used as guidance in adjusting gas pressure, as well as be extended for further study to determine process parameters such as temperatures, forming velocity, parison shape, etc.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Heat Transfer of Oscillating Flow in a Cylinder with Regenerator (재생기를 가진 실린더내의 왕복유동에 관한 열전달)

  • 김진호;이재헌;강병하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.

A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김진형;홍성인;이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

Relationship between Anatomical Properties and Compression Strength Parallel to Grain of Larix kaemferi C.

  • Oh, Seung-Won;Jeong, In-Soo
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.4
    • /
    • pp.49-57
    • /
    • 2006
  • Larix kaemferi is now a major economic kind of trees and is produced in large quantity every year. Thus, the study of Larix kaemferiis conducted to acquire the basic date of measures for the reasonable use, clarifying the relation with the compression strength parallel to grain according to anatomical properties by heartwood and sapwood, and earlywood and latewood. As the length of an earlywood tracheid and the radial wall thickness of earlywood and latewood tracheids increased, the compression strength rose, and as the height of uniseriate ray in cell number increased, the compression strength parallel to grain fell. The major anatomical factors effecting on the compression strength parallel to grain of heart wood were the radial wall thickness of a latewood tracheid and the length of a latewood tracheid, while in sapwood, the length of an earlywood tracheid and the radial wall thickness of earlywood and latewood tracheids were the major factor on it.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

Morphological Analysis of the Sinus Lateral Wall Using Cone-Beam Computed Tomography (콘빔형 전산화단층영상을 이용한 상악동 측벽의 형태학적 분석)

  • An, Seo-Young;Kim, Yong-Gun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.349-357
    • /
    • 2012
  • The purpose of this study was to measure the thickness of the sinus lateral wall using cone-beam computed tomography (CBCT), and to find the most suitable vertical position for lateral window opening prior to sinus elevation. Fifty three patients requiring sinus elevation had CBCT scans acquired by CB MercuRay (Hitachi, Medico, Tokyo, Japan) from July, 2010 to June, 2012. The thickness of the sinus lateral wall was measured according to its vertical position against the sinus inferior border (SIB), and its mean was calculated through two repeated measurements. The thickness of the sinus lateral wall was more than 2 mm at 2 mm above the sinus inferior border (SIB+2), however, it was less than 2 mm at 3 mm above the sinus inferior border (SIB+3). In conclusion, it is recommended that the inferior border of lateral wall window be made 3 mm above the sinus inferior border during sinus elevation using the lateral approach considering the thickness of the sinus lateral wall.

Dependencies of Ultrasonic Velocities on the Wall Thickness in Polyvinyl Chloride Cortical Bone Mimics

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.140-145
    • /
    • 2010
  • In the present study, tubular polyvinyl chloride (PVC) cortical bone mimics that simulate the cortical shell of long bones were used to validate the axial transmission technique for assessing the cortical thickness by measuring the ultrasonic velocities along the cortical shell of long bones. The ultrasonic velocities in the 9 PVC cortical bone mimics with wall thicknesses from 4.0 to 16.1 mm and inner diameters from 40 to 300 mm were measured as a function of the thickness by using a pair of custom-made transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. In order to clarify the measured behavior, they were also compared with the predictions from a theory of guided waves in thin plates. This phantom study using the PVC cortical bone mimics provides useful insight into the dependencies of ultrasonic velocities on the cortical thickness in human long bones.

Optimized Insulation Thickness of the Refrigerated Warehouse with Different Envelope Structures and Insulation Materials by L.C.C. Analysis (생애비용 분석을 통한 외벽 및 단열재료 종류별 냉동냉장창고 외피의 적정 단열두께 산정)

  • 강승희;구보경;황혜주;석호태;안홍섭;송승영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.372-381
    • /
    • 2003
  • This study aims to find out the optimized insulation thickness of refrigerated warehouse with different envelope structures (RC and PC wall) and insulation materials (urethane and icynene). Each of them is compared according to the thickness of insulation (100, 150, 200 mm/50 or 250 mm) and the temperature of cold storage room (0, -6, -15$^{\circ}C$). As results, it is proved to have the best economical efficiency in life cycle cost when PC wall with thickness of 100 mm (0 and -6$^{\circ}C$) and 150 m (-15$^{\circ}C$) urethane, respectively, are applied.

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF