• Title/Summary/Keyword: Wall quenching

Search Result 38, Processing Time 0.029 seconds

Transition mechanism during the critical heat flux condition in flow and pool boiling (유동 및 풀비등에 있어서 한계열플럭스 상태하의 천이기구)

  • 김경근;김명환;권형정;김종헌;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 1989
  • Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.

  • PDF

An experimental study on the mechanism of hydrocarbon emissions (배기 Hydrocarbon의 생성과정에 과한 실험적 연구)

  • 심현성;박찬준;이대운
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.25-31
    • /
    • 1991
  • The formation process of hydrocarbon emissions was investigated in SI engine. The time- resolved concentrations of hydrocarbon emissions were measured using a high gas sampling valve and a gas chromatography. The gas was sampled at exhaust port, or the position of spark plug, or the wall of combustion chamber. The experiments were conducted using the Alpha engine of Hyundai Motor Company. The fuel used was methanol or propane. It was found that the effect of the quenching layer of combustion chamber wall on hydrocarbon emissions was not significant. The increasing rate of hydrocarbon concentration at combustion chamber wall near crevice and oil layer after flame was reached was much higher than that at the position of spark plug. The hydrocarbon concentrations at exhaust port had two peak values just after opening exhaust valve and just before closing it.

  • PDF

Axial strength of Zircaloy-4 samples with reduced thickness after a simulated loss of coolant accident

  • Desquines, Jean;Taurines, Tatiana
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2295-2303
    • /
    • 2021
  • To investigate wall-thinning impact on axial load resistance of Zircaloy-4 cladding rods after a LOCA transient, axial tensile samples have been machined on as-received tubes with reduced thicknesses between 370 and 580 ㎛. After high temperature oxidation under steam at 1200 ℃ with measured ECR ranging from 10 to 18% and water quenching, machined samples were axially loaded until fracture. These tests were modeled using a fracture mechanics approach developed in a previous study. Fracture stresses are rather well predicted. However, the slightly lower fracture stress observed for wall-thinned samples is not anticipated by this modeling approach. The results from this study confirm that characterizing the axial load resistance using semi-integral tests including the creep and burst phases was the best option to obtain accurate axial strengths describing accurately the influence of wall-thinning at burst region.

The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor (수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향)

  • WON JUNE LEE;JEONGJAE HWANG;HAN SEOK KIM;KYUNGWOOK MIN;MIN KUK KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.776-785
    • /
    • 2022
  • Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.

Experimental Study on Air Arcs Interruption Phenomena with Arc Quenching Materials (소호 재료에 따른 기중 아크 차단 현상의 실험적 연구)

  • Lee, S.Y.;Yeon, Y.M.;Park, H.T.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1751-1753
    • /
    • 2002
  • Arc phenomena occur in the air, must be more diverse than vacuum and SF6. An air arc interruption method has been used in low rated voltage circuit breakers such as ACB, MCCB and MCB. Most of them have the arc chamber composed of arc chutes and lateral walls that made of many kinds of materials. Therefore, the criterion of material selection is necessary for breaking capacity improvement. So, we selected some contact and lateral wall materials, and carried out short circuit tests. Especially, some parameters of arc plasma properties were very different each polymeric wall material.

  • PDF

Improvement of Liquid Droplet Entrainment Model in the COBRA-TF Code

  • Ha, Kwi-Seok;Jeong, Jae-Jun;Sim, Suk-Ku
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 1998
  • The COBRA-TF liquid droplet entrainment models have been assessed and improved through various experiments. The COBRA-TF code uses the Wurtz entrainment model in the film mist flow regime and the mechanistic model based on the critical Weber number and critical vapor velocity in the hot wall flow regimes, respectively. The Wurtz model has been replaced with the modified Sugawara model. The assessment against the experiments by Hewitt, Keeys, Yanai, and Whalley showed the modified Sugawara model better predicts the steam-water as well as the air-water experiments for the film mist flow regime. For hot wall flow regime, the COBRA-TF entrainment model was modified using two methods, one with an increased critical Weber number and the other with the Yonomoto's critical vapor velocity model. The modified models were assessed using the FLECHT-SEASET bottom reflood tests. The results showed that the Yonomoto model best predicts the quenching time, whereas the local maximum rod temperature was not affected much.

  • PDF

Large Scale Treatment of Perfluorocompounds Using a Thermal Plasma Scrubber

  • Han, Sung-Han;Park, Hyun-Woo;Kim, Tae-Hee;Park, Dong-Wha
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.250-258
    • /
    • 2011
  • Thermal plasma has been presented for the decomposition of perfluorocompounds (PFCs) which are extensively used in the semiconductor manufacturing and display industry. We developed pilot-scale equipment to investigate the large scale treatment of PFCs and called it a "thermal plasma scrubber". PFCs such as $CF_4$, $C_2F_6$, $SF_6$, and $NF_3$ used in experiments were diluted with $N_2$. There were two different types of experiment setup related to the water spray direction inside the thermal plasma scrubber. The first type was that the water was sprayed directly into the gas outlet located at the exit of the reaction section. The second type was that the water was sprayed on the wall of the quenching section. More effective decomposition took place when the water was sprayed on the quenching section wall. For $C_2F_6$, $SF_6$, and $NF_3$ the maximum destruction and removal efficiency was nearly 100%, and for $CF_4$ was up to 93%.

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Effects of Heat Treatment on Damping Characteristics of Fe-Al Alloys (Fe-Al 합금의 제진특성에 미치는 열처리의 영향)

  • Lee, J.H.;Kim, K.J.;Kim, D.K.;Lee, K.H.;Shin, M.C.
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.302-309
    • /
    • 1996
  • Fe-5.7%AI-1.1%Cr-0.5%Si damping alloys containing 0%C and 0.12%C were heat-treated at $800^{\circ}C$ for an hour and then cooled by using some different methods. The damping behaviors of these alloys were observed by optical microscopy, X-ray diffraction and a specific damping capacity(SDC) test. Effect of cooling method on microstructures and the internal stresses of these alloys were negligible while the damping capacity of these alloys was considerably deteriorated by water quenching. The (200) texture was mainly developed by water quenching while the (110) texture by furnace cooling. These results were interpreted by the magnetization behaviors of the ferromagnetic $\alpha$ ferrite. The easy axis of magnetization in <100> direction means that <100> axis has more $180^{\circ}$ magnetic domain walls than $90^{\circ}$ ones. Thus. $180^{\circ}$ magnetic domain walls were more formed by water quenching, which deteriorated the damping capacity of these alloys. Consequently, the amount of magnetic domain walls giving good damping capacity became less so that the damping capacity was poor in water quenching.

  • PDF

Numerical Study of Combustion Characteristics Inside a Micro-Tube Combustor (마이크로 튜브 연소기의 연소특성에 대한 수치해석 연구)

  • Oh Chang Bo;Choi Byung Il;Han Yong Shik;Kim Myung Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1352-1359
    • /
    • 2005
  • Unsteady simulations were performed to investigate the flame structure and the dynamic behavior of a premixed flame exposed to the wall heat loss. A 3-step global reaction mechanism was adopted in this study. Simulations were performed for two tube combustors with inner diameters($d_i$) of 1mm and 4mm. The material of tube combustor was assumed to be a Silicon Nitride($Si_{3}N_4$). The heat loss from the outer tube wall was controlled by adjusting the amount of convective and radiative heat loss. A conical premixed flame could be stabilized inside a tube of $d_i=4mm$. The flame stability inside a tube of $d_i=4mm$ combustor was not much sensitive to the amount of heat loss. In case of a tube of $d_i=1mm$, an oscillating flame was observed in very low heat loss condition and a flame could not be sustained in realistic heat loss condition.