• Title/Summary/Keyword: Wall paper

Search Result 2,978, Processing Time 0.029 seconds

Parametric study on the lateral strength of URM wall, retrofitted using ECC mortar

  • Niasar, Alireza Namayandeh;Alaee, Farshid Jandaghi;Zamani, Sohail Majid
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.451-466
    • /
    • 2020
  • In this paper, the effect of Engineered Cementitious Composites (ECC) on the lateral strength of a bearing unreinforced Masonry (URM) wall, was experimentally and numerically investigated. Two half scale solid walls were constructed and were tested under quasi-static lateral loading. The first specimen was an un-retrofitted masonry wall (reference wall) while the second one was retrofitted by ECC mortar connected to the wall foundation via steel rebar dowels. The effect of pre-compression level, ECC layer thickness and one or double-side retrofitting on the URM wall lateral strength was numerically investigated. The validation of the numerical model was carried out from the experimental results. The results indicated that the application of ECC layer increases the wall lateral strength and the level of increment depends on the above mentioned parameters. Increasing pre-compression levels and the lack of connection between the ECC layer and the wall foundation reduces the influence of the ECC mortar on the wall lateral strength. In addition, the wall failure mode changes from flexure to the toe-crashing behavior. Furthermore, in the case of ECC layer connected to the wall foundation, the ECC layer thickness and double-side retrofitting showed a significant effect on the wall lateral strength. Finally, a simple method for estimating the lateral strength of retrofitted masonry walls is presented. The results of this method is in good agreement with the numerical results.

Characteristics and Applicability of CWS(Continuous Wall System)II Method (CWS(Continuous Wall System)II 공법의 특성 및 적용성)

  • Lim, In-sig;Lee, Jeong-bae;Kim, Jae-dong;Lee, Jai-ho;Woo, Sung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.43-47
    • /
    • 2008
  • CWSII method was developed to overcome the problems of frequent occurrence in the application of existing downward construction methods, especially in the case of using slurry wall instead of SCW or CIP as a retaining wall. By the improvements in connecting steel beams with the wall, CWSII method is able to ensure the settlement of a steel beam and the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. As the desired results, CWS method can be applied as a practical downward construction method regardless of the type of retaining wall. In this paper, besides the concept and features of CWSII method, it can be seen that the method can provide reliable and economical performances by comparing with existing methods.

  • PDF

Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns (분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구)

  • 정성오;이기홍;이문용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.

Seismic Behavior of Steel Coupling Beam-Wall Connection with Pane Shear Failure (패널파괴형 철골 커플링 보-벽체 접합부의 내진거동)

  • Park Wan-Shin;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yang Il-Seung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.

  • PDF

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

Applicability of Existing Fracture Initiation Models to Modern Line Pipe Steels

  • Shim, Do Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.1-24
    • /
    • 2016
  • The original fracture criteria developed by Maxey/Kiefner for axial through-wall and surface-cracked pipes have worked well for many industries for a large variety of relatively low strength and toughness materials. However, newer line pipe steels have some unusual characteristics that differ from these older materials. One example is a test data that has demonstrated that X80 line-pipe with an axial through-wall-crack can fail at pressures about 30 percent lower than predicted with commonly used analysis methods for older steels. Thus, it is essential to review the currently available models and investigate the applicability of these models to newer high-strength line pipe materials. In this paper, the available models for predicting the failure behavior of axial-cracked pipes (through-wall-cracked and external surface-cracked pipes) were reviewed. Furthermore, the applicability of these models to high-strength steel pipes was investigated by analyzing limited full-scale pipe fracture initiation test results. Based on the analyzed results, the shortcomings of the available models were identified. For both through-wall and surface cracks, the major shortcomings were related to the characterization of the material toughness, which generally leads to non-conservative predictions in the J-T analyses. The findings in this paper may be limited to the test data that were consider for this study. The requisite characteristics of a potential model were also identified in the present paper.

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Explosion Resistance Performance of Corrugated Blast Walls for Offshore Structures made of High Energy Absorbing Materials (고에너지흡수 신소재 적용 해양플랜트 파형 방폭벽의 폭발 저항 성능)

  • Noh, Myung-Hyun;Park, Kyu-Sik;Lee, Jae-Yik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, a finite element dynamic simulation study was performed to gain an insight about the blast wall test details for the offshore structures. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of high energy absorbing high manganese steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the blast wave response of the corrugated blast wall made of the high manganese steel considering strain rate effects. The numerical results for various parameters are verified by comparing different material models with dynamic effects occurred in the blast wall from the explosive simulation.