• 제목/요약/키워드: Wall mass effect

검색결과 245건 처리시간 0.025초

중대사고시 금속용융물층의 냉각 조건과 높이가 열속 집중 현상에 미치는 영향 (Focusing effect of a Metallic Layer according to the Cooling Condition and Height in a Severe Accident)

  • 문제영;정범진
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.78-87
    • /
    • 2015
  • 중대사고시 금속용융물층의 열속 집중 현상(Focusig effect)에 대해 상부와 측면벽의 냉각 조건과 높이를 변화시키면서 실험과 수치해석을 수행하였다. 상사성(Analogy) 원리를 이용해 열전달 실험 대신 물질전달 실험을 수행하였으며 황산-황산구리 수용액의 전기도금계를 물질전달계로 채택하였다. $Ra_H$$8.49{\times}10^7{\sim}5.43{\times}10^9$ 범위에서 상부와 측면벽의 냉각 조건을 세 가지로, 높이를 네 가지로 변화시키면서 열전달을 측정하였다. 상부만 냉각인 경우의 실험결과를 동일한 조건인 Rayleigh-Benard 자연대류 상관식과 비교한 바 Dropkin과 Somerscales, Globe와 Dropkin의 상관식과 매우 일치하였다. 측면벽만 냉각인 경우, 상부와 측면벽 모두 냉각인 경우, 상부만 냉각인 경우 순으로 열전달이 감소하였고, 냉각 조건을 고정한 상태에서 높이를 감소시킬수록 측면 열전달이 향상되었다.

An Extended Numerical Calibration Method for an Electrochemical Probe in Thin Wavy Flow with Large Amplitude Waves

  • Park, Ki-Yong;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.553-558
    • /
    • 1998
  • The calibrating method for an electrochemical Probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution wave-induced normal velocity can be classified on the dimensionless parameter V. If V above a critical value of V, $V_{crit}$, the effects of the wave-induced normal velocity become larger with an increase in V. IF V its effects negligible for V < $V_{crit}$. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. The president inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method.

  • PDF

EFFECT OF HEAT ABSORPTION ON UNSTEADY MHD FLOW PAST AN OSCILLATING VERTICAL PLATE WITH VARIABLE WALL TEMPERATURE AND MASS DIFFUSION IN THE PRESENCE OF HALL CURRENT

  • RAJPUT, US;KANAUJIA, NEETU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.241-251
    • /
    • 2018
  • The present study is carried out to examine the combined effect of heat absorption on flow model. The model consists of unsteady flow of a viscous, incompressible and electrically conducting fluid. The flow is along an impulsively started oscillating vertical plate with variable mass diffusion. The magnetic field is applied perpendicular to the plate. The fluid model under consideration has been solved by Laplace transform technique. The numerical data obtained is discussed with the help of graphs and table. The numerical values obtained for skin-friction have been tabulated. To shorten the lengthy equations in the solution some symbols have been assumed, which are mentioned in appendix. The appendix is included in the article as the last section of the manuscript.

배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰 (Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer)

  • 윤필현;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

A mathematical model of blood flow and convective diffusion processes in constricted bifurcated arteries

  • Chakravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.51-65
    • /
    • 2006
  • Of concern in the present theoretical investigation is the study of blood flow and convection-dominated diffusion processes in a model bifurcated artery under stenotic conditions. The geometry of the bifurcated arterial segment having constrictions in both the parent and its daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is constructed mathematically with the introduction of suitable curvatures at the lateral junction and the flow divider. The streaming blood contained in the bifurcated artery is treated to be Newtonian. The flow dynamical analysis applies the two-dimensional unsteady incompressible nonlinear Wavier-Stokes equations for Newtonian fluid while the mass transport phenomenon is governed by the convection diffusion equation. The motion of the arterial wall and its effect on local fluid mechanics is, however, not ruled out from the present model. The main objective of this study is to demonstrate the effects of constricted flow characteristics and the wall motion on the wall shear stress, the concentration profile and on the mass transfer. The ultimate numerical solutions of the coupled flow and diffusion processes following a radial coordinate transformation are based on an appropriate finite difference technique which attain appreciable stability in both the flow phenomena and the convection-dominated diffusion processes.

내, 외단열 공동주택의 축열체 위치 차이에 따른 동단위 연간 냉난방부하 비교평가 (Comparison of Annual Heating and Cooling Loads of Internally and Externally Insulated Apartment Buildings According to the Location of Thermal Mass)

  • 구보경;이병인;최두성;송승영
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.42-49
    • /
    • 2010
  • The IIS(Internal Insulation System) is applied in most Korean apartment buildings which are the most common type of residential buildings. Consequently, there are many cases in which the layer of insulation is disconnected by the structural components at the wall-slab and wall-wall joints in the envelope. These joints become thermal bridges where the risk of heat loss increases. It is expected that the EIFS(External Insulation and Finish System) is the solution to this problem. In this study, annual heating and cooling loads of apartment buildings with IIS and EIFS were compared using Design Builder program in order to evaluate the thermal storage effect of EIFS where the concrete thermal mass is located inside of the insulation material. As results, the apartment building with EIFS could reduce annual heating and cooling loads by 2.4% and 4.1%, respectively.

다공확장벽을 이용한 플룸간섭의 제어 (Control of Plume Interference Using a Porous Extension)

  • Young-Ki Lee;Heuy-Dong Kim
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

마이크로채널 흐름에 관한 종횡비의 영향 (Effect of Aspect Ratio on Gas Microchannel Flow)

  • 타줄 이슬람;이연원
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.

Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

  • Zeng, L.;Zhang, G.A.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.23-30
    • /
    • 2017
  • The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.