• Title/Summary/Keyword: Wall film

Search Result 611, Processing Time 0.026 seconds

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box (사각용기에서 발생하는 고점성 유체의 슬로싱 유동)

  • park, Jun Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

Characterization of $RuO_2$ Thin Films by Hot-wall Metal Organic Chemical Vapor Deposition (Hot-wall MOCVD에 의한 $RuO_2$ 박막의 특성)

  • 신웅철;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.969-976
    • /
    • 1996
  • RuO2 thin films were deposited on SiO2(1000 $\AA$)/Si by hot-wall Metal Organic Chemical Vapor Depositon. The crystallinity of RuO2 thin films increased with increasing deposition temperature and the preferred orienta-tion of RuO2 films converted (200) plane to (101) plane with increasing film thicknesses. Such a change in preferred orientation was influenced on the crystallographic structure and the residual stress of RuO2 thin films. The resistivity of the 2700$\AA$-thick RuO2 thin films deposted at 30$0^{\circ}C$ was 52.7$\mu$$\Omega$-cm and they could be applicable to bottom electrodes of high dielectric materials. However the resistivity of RuO2 thin films increased with decreasing film thicknesses. The grain size and the resistivity of RuO2 thin films were densified with increasing the annealing temperature and showed the decrease of resistivity.

  • PDF

Photocurrent Improvement by Incorporation of Single-Wall Carbon Nanotubes in TiO2 Film of Dye-Sensitized Solar Cells

  • Jung, Kyoung-Hwa;Jang, Song-Rim;Vittal, R.;Kim, Dong-Hwan;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1501-1504
    • /
    • 2003
  • Single-wall carbon nanotubes (SWCN) were integrated in $TiO_2$ film and the beneficial influence on the dyesensitized solar cells in terms of improved photocurrent was studied in the light of static J-V characteristics obtained both under illumination and in the dark, photocurrent transients, IPCE spectra and impedance spectra. Compared with a solar cell without SWCN, it is established that the photocurrent density of the modified cell increases at all applied potentials. The enhanced photocurrent density is correlated with the augmented concentration of electrons in the conduction band of $TiO_2$ and with increased electrical conductivity. Explanations are additionally corroborated with the help of SEM, Raman spectra and dye-desorption measurements.

Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon;Min, Byung Ghyl;Lee, Sang Cheol;Park, Sung Bum;Lee, Tae Dong;Park, Min;Kumar, Satish
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.198-203
    • /
    • 2004
  • Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

An Investigation of Roughness Effects on 2-Dimensional Wall Attaching Offset Jet Flow (조도가 2차원 벽부착 제트유동에 미치는 영향에 관한 연구)

  • 윤순현;김대성;박승철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.219-230
    • /
    • 1995
  • The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

The Effect on the Film Cooling Performance of Thrust Chamber with Combustion Performance Parameters (연소성능 파라미터가 추력실의 막냉각 성능에 미치는 영향)

  • Kim Sun-Jin;Jeong Chung-Yon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-54
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the lab-scale liquid rocket engine using liquid oxygen(LOx) and Jet A-1(Jet engine fuel) as propellants. Film coolants(Jet A-1 and water) was injected through the film cooling injector. The outside wall temperature of the combustor and film cooled length were determined for chamber pressure, mixture ratio, and the different geometries(injection angle) with the percent film coolant flow rate. The loss of characteristic velocity was determined for the case of film cooling with water and Jet A-1. As chamber pressure increased, the outside wall temperature increased in the nozzle but unchanged over the 9 percent film coolant flow rate for the combustion chamber used in this study. Characteristic velocity wasn't affected with the mixture ratio over the 9 percent film coolant flow rate.

Experimental Study on Effect of Water-based Iron(III) Oxide Nanofluid on Minimum Film Boiling Point During Quenching of Highly Heated Test Specimen (고온 시편의 급랭 시 산화철 나노유체가 최소막비등점에 미치는 영향에 대한 실험적 연구)

  • Jeong, Chan Seok;Hwang, Gyeong Seop;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.128-136
    • /
    • 2020
  • In the present experimental study, the effect of water-based iron(III) oxide nanofluid on the MFB(Minimum Film Boiling) point during quenching was investigated. As the highly heated test specimen, the cylindrical stainless steel rod was used, and as the test fluids, the water-based iron(III) oxide nanofluids of 0.001 and 0.01 vol% concentrations were prepared with the pure water. To examine the effect of location in the test specimen, the thermocouples were installed at the bottom and middle of wall, and center in the test specimen. Through a series of experiments, the experimental data about the influences of nanofluid concentrations, the number of repeated experiments, and locations in the test specimen on the reaching time to MFB point, MFBT(Minimum Film Boiling Temperature), and MHF(Minimum Heat Flux) were obtained. As a result, with increasing the concentration of nanofluid and the number of repeated experiments, the reaching time to MFB point was reduced, but the MFBT and MHF were increased. In addition, it was found that the effect of water-based iron(III) oxide nanofluid on the MFB point at the bottom of wall in the test specimen was observed to be greater than that at the middle of wall and center. In the present experimental ranges, as compared with the pure water, the water-based iron(III) oxide nanofluid showed that the maximum reduction of reaching time to MFB point was about 53.6%, and the maximum enhancements of MFBT and MHF were about 31.1% and 73.4%, respectively.

Inkjet Printing of Single Walled Carbon Nanotubes

  • Song, Jin-Wong;Han, Chang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.79-81
    • /
    • 2008
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as $34{\mu}m$. In this repeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about ${\pm}5%$ deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.