• 제목/요약/키워드: Wall drag

검색결과 172건 처리시간 0.024초

솔리드 모델링의 새로운 지평

  • 김영진
    • 한국CDE학회지
    • /
    • 제2권2호
    • /
    • pp.17-19
    • /
    • 1996
  • 윈도우 95 운영체제하에서 기계설계에서의 솔리드 모델링을 가능하게 하는 SolidWorks 95라고 불리는 완전히 새로운 소프트웨어가 판매중이다. SolidWorks는 변수설계에 기초한 솔리드 모델링이며 drag-and-drop 기법을 이용하여 임의의 솔리드에 원하는 기능을 부여할 수 있게 하였다. 또 이 소프트웨어는 draft angles, thin-wall shells, variable radius fillets, lofts, sweeps, chamfers, revolved surface 등을 제공하고 있다. 이 소프트웨어에만 있는 기능은 다음과 같다. 파트의 실시간 리쉐이핑, 기능구성용 마법사, 그리고 형상 히스토리 등이다. 형상 히스토리는 개개의 모델에 대한 기능과 서로간의 관계를 수록하며 이를 통해 사용자가 원하는 기능을 빨리 선택하게 할 뿐 아니라, drag-and-drop을 통하여 언제라도 다른 영역에 그 기능을 부여할 수 있게 한다.

  • PDF

항력저감을 위한 굽은 난류채널 유동제어 (Control of Turbulent Curved Channel Flow for Drag Reduction)

  • 최정일;성형진
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1302-1310
    • /
    • 2002
  • A direct numerical simulation in turbulent curved channel flow is performed. The drifting Taylor-Gortler vortices are identified by applying a conditional averaging. A new algorithm is proposed based on the wavelet transform of the wall information. A continuous wavelet transform with Marr wavelets is employed to decompose the flow signals at a chosen length scale. An active cancellation is applied to attenuate the Taylor-Gortler vortices and to reduce the wall skin friction.

자연층류 익형 풍동시험 전산유체해석 (Computational Fluid Dynamics Analysis of Wind Tunnel Test for Natural Laminar Flow Airfoil)

  • 김철완;이융교
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.27-30
    • /
    • 2008
  • 풍동시험의 벽면효과 보정방법이 풍동시험 조건에서 수행된 전산해석결과에 적용되었다. 보정을 마친 양력계수는 벽면이 없는 조건에서 수행된 전산해석 결과와 잘 일치하지만 보정된 항력계수는 벽면효과가 제거된 결과와 약간의 차이를 보인다.

  • PDF

CMFD 코드의 난류 모델 및 비견인력 모델의 검증 계산 (VERIFICATION OF TURBULENCE AND NON-DRAG INTERFACIAL FORCE MODELS OF A COMPUTATIONAL MULTI-FLUID DYNAMICS CODE)

  • 박익규;전건호
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.99-108
    • /
    • 2013
  • The standard drag force and virtual mass force, which exert to the primary flow direction, are generally considered in two-phase analysis computational codes. In this paper, the lift force, wall lubrication force, and turbulent dispersion force including turbulence models, which are essential for a computational multi-fluid dynamics model and play an important role in motion perpendicular to the primary flow direction, were introduced and verified with conceptual problems.

도로터널 환기시스템 개발연구 (Development of Vehicle Tunnel Ventilation System)

  • 이창우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

국소적 초음파 가진이 난류경계층에 미치는 영향 (Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer)

  • 박영수;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

미세 리블렛 평판 상부 난류경계층 유동에서 횡방향 와의 공간적 분포특성 (Spatial Distributions of Spanwise Vortices in a Turbulent Boundary Layer over a Micro-riblet Film)

  • 최용석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2660-2665
    • /
    • 2007
  • Turbulent boundary-layer over a micro-riblet film(MRF) was investigated experimentally. The MRF has sharp V-shaped micro scale grooves of $300{\mu}m$ in width and $176.8{\mu}m$ in height. Particle image velocimetry(PIV) system was employed to measure velocity fields of flow over the MRF coated plate. Flow over a smooth plate was also measured for comparison. The PIV measurements were taken in the streamwise wall-normal planes at Re$\theta$= 985 and 2342. Vortex structures of the flow were analyzed by extracting the swirling strength as an unambiguous vortex-identification criterion. As a result the number of spanwise vortices with clockwise(negative) rotation decreases rapidly in the near-wall region(y<0.2h), but decreases slowly in the outer region(0.2h

  • PDF

점착경계처리법을 이용한 원형실린더 주위의 유동해석 (NUMERICAL STUDY ON FLOW OVER CIRCULAR CYLINDER USING NO SLIP BOUNDARY TREATMENT)

  • 강정호;김형민
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.28-36
    • /
    • 2006
  • NSBT(No Slip Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the solid wall of obstacle in a flow field. In our research, NSBT was used to perform LBM simulation of a flow over a circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of NSBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a circular and square cylinder in a channel and the results were compared against the solution of Navier-Stokes equation. The simulations were performed in a moderate range of Reynolds number at each cylinder position to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is in the range of 200$\sim$250. For the gap parameter $\gamma$ = 2 cases at Re > 240, the vortex shedding were symmetric and it resembled the Karmann vortex. As the cylinder approached to one wall, the vorticity significantly reduced in length while the vorticity on the other side elongated and the vorticity combined with the wall boundary-layer vorticity. The resultant $C_d$ by LBM concurred with the results of DNS simulation performed by previous researchers.

가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석 (Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.