• Title/Summary/Keyword: Wall displacement

Search Result 791, Processing Time 0.026 seconds

Prediction and validation of the stability for the excavated ground using numerical analysis (수치해석을 이용한 굴착지반의 안정성 검토와 예측)

  • Song, Joon-Hwa;Jang, Yeon-Soo;Kwon, Oh-Kwoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1448-1454
    • /
    • 2005
  • Horizontal displacement of slurry wall with strut is analyzed using 2-D numerical stress-displacement program, FLAC. Validation of the program results are performed using the pre- and ongoing excavation sections and further displacement is predicted in the stage of strut removal. The result show that the calculated displacement was very close to the measured displacement when 40% in-situ strut preloading is applied to the strut loading of the program considering the horizontal spacing of struts in the field. It was found that construction efficiency can be improved by partially removing the struts before putting slabs in the stage of subway structure construction.

  • PDF

Suitability Evaluation of Lateral Earth Pressure for Design Diaphragm Walls applied to the Top-Down Construction Method (Top-Down 공법이 적용된 지중연속벽의 설계시 측방토압의 적합성 평가)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The Rankine(1857)'s earth pressure and the Hong and Yun(1995a)'s earth pressure was applied to analyze the lateral displacement of diaphragm wall applied to the Top-Down construction method using the computer program, which is a common design program for diaphragm wall. The lateral displacement estimated by the computer program was compared with the lateral displacement measured by inclinometer. The Rankine's earth pressure has been widely used to design the diaphragm wall in the analysis of computer program. As the result of comparison, the lateral displacement of diaphragm wall was predicted differently according to the applied earth pressures. The behavior of lateral displacement predicted by the Rankine's earth pressure was different with displacement measured by inclinometer and the lateral displacement at the bottom part was overestimated. However, the lateral displacement predicted by the Hong and Yun's earth pressure is similar to the behavior and maximum value of real displacement. Therefore, the Hong and Yun's earth pressure is more suitable than the Rankine' earth pressure to design the diaphragm walls applied to the Top-Down Construction Method.

Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake (지진시 옹벽의 수평변위 예측기법의 개발)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.143-150
    • /
    • 2021
  • To develop the technique for predicting the horizontal displacement of a retaining wall induced by an earthquake, an equation of motion that depicts the retaining wall-soil vibrating system was derived. The resulting differential equation was solved using the Runge-Kutta-Nystr?m method. Considering the pre-mentioned derivation process, the analysis procedures for obtaining horizontal displacement induced by an earthquake were programmed. The core algorithm of the displacement-force relationship, which is the main engine of the developed program, was suggested. Considering the results obtained by adopting the developed program to the assumed retaining wall under an earthquake, the relationships between the time-displacement, time-force, and displacement-force were reasonable. According to the results computed by the program, the displacements to the front direction of the wall occurred, and the displacement per cycle converged after some cycles elapsed. Displacements with a natural period were calculated, which showed that the maximum displacement was observed when the natural frequency was slightly different from the excitation frequency rather than the same values of the two frequencies. This happens because the vibrating system was modeled by two springs with different stiffness.

Numerical Analysis of Block Type Quay Wall with Piles for Restraining Horizontal Deformation (말뚝 결합 블록식 안벽의 수평변위 억제에 대한 수치해석 연구)

  • Soon-Goo Kwon;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.155-163
    • /
    • 2023
  • A two-dimensional numerical analysis was performed on the depth of pile embedment, the magnitude of the residual water level, and the condition of the presence or absence of cap concrete to understand the behavior of the block-type quay wall with piles. The results showed the control effect of the lateral displacement of the quay wall depending on the embedment of the pile. When the piles were not embedded, the lateral displacement of the quay wall increased proportionally as the residual water level difference increased. In contrast, when the piles were embedded into the ground, the control of the lateral displacement of the quay wall was greatly exerted even if the residual water level difference increased. There was little difference in the lateral displacement of the block-type quay wall regardless of the presence or absence of cap concrete. Under the condition where the piles were embedded down to the rubble mound layer, the piles exhibited the rotational behavior seen in the short piles. As the embedment depth of the piles increased, the piles showed the same bending behavior as the intermediate piles. Thus, the piles significantly contribute to the control of lateral displacement in the block-type quay wall with piles.

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

가설흙막이의 버팀대 선행하중량과 흙막이 벽체 변형등에 대한 분석

  • Kim, Hak-Cheong;Jeong, Gwang-Ryeol
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.35-44
    • /
    • 2006
  • Supporting method of a Temporary retaining wall for underground excavation project are adopted by systems of strut, anchor, nail, raker, etc. Strut system and Raker system of these methods are mostly used preloading jack to minimize deformations of retaining wall. We determinate efficient preloading to analysis these strut-preloadings, deformations of retaining wall, axial forces, and etc.. This study is analysed that preloading applied 0%, 10%, 20%, 30%, ...., 100% for strut and raker installed by CIP temporary retaining wall. This study results that adequate preloadings were determined to analysis correlations of preloading, deformations of wall, maximum bending moment, axial force of strut, and displacement of surrounding.

  • PDF

Proposal of Mobilized Passive Earth Pressure to Allowable Wall Displacement and Movement Types in Sandy Soil (벽체 허용변위와 양상을 고려한 사질토지반에서 수동측토압 제안)

  • Yoon, Young-Ho;Kim, Tae-Hyung;Kim, Tae-O;Woo, Min-seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.5-15
    • /
    • 2023
  • The evaluation of passive earth pressure plays a crucial role in the design of earth-retaining structures such as retaining walls and temporary earth-retaining walls to withstand horizontal earth pressure. In the earth pressure theory, active and passive earth pressures represent the earth pressures at the limit state, where the wall displacement reaches the maximum allowed displacement. In the design of earth-retaining structures, the passive earth pressure is considered as the resisting force. In this context, the limit displacement at which passive earth pressure occurs is significantly greater than that associated with the active earth pressure. Therefore, it is irrational to apply this displacement directly to the calculation of passive earth pressure. Instead, it is necessary to consider the mobilized passive earth pressure exerted at the allowable horizontal displacement to evaluate the structural stability. This study proposes an allowable wall displacement, denoted as 0.002 H (where H represents the excavation depth), based on a literature review that focuses on sandy soils. To calculate the mobilized passive earth pressure from the wall displacement, a semi-empirical equation is proposed. By analyzing the obtained data on mobilized passive earth pressure, a reduction factor applicable to Rankine's passive earth pressure is proposed for practical application in sandy soils under different wall movement types.