• 제목/요약/키워드: Wall deflection

검색결과 137건 처리시간 0.028초

Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers

  • Mansouri, Hadiseh;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.315-327
    • /
    • 2019
  • Deep excavations for development of subway systems in metropolitan regions surrounded by adjacent buildings is an important geotechnical problem, especialy in Tabriz city, where is mostly composed of young alluvial soils and weak marly layers. This study analyzes the wall displacement and ground surface settlement due to deep excavation in the Tabriz marls using two dimensional finite element method. The excavation of the station L2-S17 was selected as a case study for the modelling. The excavation is supported by the concrete diaphragm wall and one row of steel struts. The analyses investigate the effects of wall stiffness and excavation width on the excavation-induced deformations. The geotechnical parameters were selected based on the results of field and laboratory tests. The results indicate that the wall deflection and ground surface settlement increase with increasing excavation depth and width. The change in maximum wall deflection and ground settlement with considerable increase in wall stiffness is marginal, however the lower wall stiffness produces the larger wall and ground displacements. The maximum wall deflections induced by the excavation with a width of 8.2 m are 102.3, 69.4 and 44.3 mm, respectively for flexible, medium and stiff walls. The ratio of maximum ground settlement to maximum lateral wall deflection approaches to 1 with increasing wall stiffness. It was found that the wall stiffness affects the settlement influence zone. An increase in the wall stiffness results in a decrease in the settlements, an extension in the settlement influence zones and occurrence of the maximum settlements at a larger distance from the wall. The maximum of settlement for the excavation with a width of 14.7 m occurred at 6.1, 9.1 and 24.2 m away from the wall, respectively, for flexible, medium and stiff walls.

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

CFRP 디스플레이 월마운트암의 강성과 구조강도의 평가 (Stiffness and Strength Evaluation of the CFRP Display Wall mount Arm)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.147-154
    • /
    • 2019
  • Recently as flat display panels are getting narrower, TV wall mounts also become slimmer for interior design issue. In this study CFRP(Carbon Fiber Reinforced Plastic) was used for TV wall mount to satisfy slim arm design along with enough strength and low weight. The 16 staking sequences was made with orthogonal array to reduce experimental cases. Strength analysis of the TV wall mount arm made of CFRP laminate was studied on condition of staking sequences using FEA(Finite Element Analysis) and stiffness and strength of those cases were evaluated using deflection and Tsai-Wu's Failure criterion. The result showed that [$-45^{\circ}/90^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}$] lay up case was suitable for the wall mount arm staking design from the criteria of deflection and Tsai-Wu's Failure Index.

Behavior of underground strutted retaining structure under seismic condition

  • Chowdhury, Subha Sankar;Deb, Kousik;Sengupta, Aniruddha
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1147-1170
    • /
    • 2015
  • In this paper, the behavior of underground strutted retaining structure under seismic condition in non-liquefiable dry cohesionless soil is analyzed numerically. The numerical model is validated against the published results obtained from a study on embedded cantilever retaining wall under seismic condition. The validated model is used to investigate the difference between the static and seismic response of the structure in terms of four design parameters, e.g., support member or strut force, wall moment, lateral wall deflection and ground surface displacement. It is found that among the different design parameters, the one which is mostly affected by the earthquake force is wall deflection and the least affected is the strut force. To get the best possible results under seismic condition, the embedment depth of the wall and thickness of the wall can be chosen as around 100% and 6% of the depth of final excavation level, respectively. The stiffness of the strut may also be chosen as $5{\times}105kN/m/m$ to achieve best possible performance under seismic condition.

볼엔드밀가공에 의한 구면형상의 가공특성 (Machining Characteristics of Hemisphere Shape by Ball Endmilling)

  • 왕덕현;김원일;이윤경
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

복합레진 수복시 와동의 크기 및 수복 방법이 교두 굴곡에 미치는 영향 (INFLUENCE OF CAVITY SIZE AND RESTORATION METHODS ON THE CUSP DEFLECTION IN COMPOSITE RESTORATION)

  • 이미라;이인복;석창인;이상탁;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제29권6호
    • /
    • pp.532-540
    • /
    • 2004
  • The aim of this study was to measure the cusp deflection during composite restoration for MOD cavity in premolar and to examine the influence of cavity dimension, C-factor and restoration method on the cusp deflection. Thirty extracted maxillary premolar were prepared to four different sizes of MOD cavity and divided into six groups. The width and depth of the cavity were as follows. Group 1; $1.5{\;}{\times}{\;}1{\;}mm$, Group 2; $1.5{\;}{\times}{\;}2{\;}mm$, Group 3; $3{\;}{\times}{\;}1{\;}mm$, and Group 4-6; $3{\;}{\times}{\;}2{\;}mm$ respectively. Group 1-4 were restored using bulk filling method with Z-250 composite. However, Group 5 was restored incrementally, and Group 6 was restored with an indirect resin inlay. The cusp deflection was recorded at the buccal and lingual cusp tips using LVDT probe for 10,000 seconds. The measured cusp deflections were compared between groups, and the relationship between the cube of the length of cavity wall/the cube of the thickness of cavity wall ($L^3/T^3$). C-factor and cusp deflection or % flexure ($100{\;}{\times}$ cuspal deflection / cavity width) was analyzed. The cusp deflection of Group 1-4 were $12.1{\;}\mu\textrm{m},{\;}17.2{\;}\mu\textrm{m},{\;}16.2{\;}\mu\textrm{m}{\;}and{\;}26.4{\;}\mu\textrm{m}$ respectively. The C-factor was related to the % flexure rather than the cusp deflection. There was a strong positive correlationship between the $L^3/T^3$ and the cusp deflection. The cusp deflection of Group 5 and 6 were $17.4{\;}\mu\textrm{m}{\;}and{\;}17.9{\;}\mu\textrm{m}$ respectively, which are much lower value than that of Group 4.

반복상재하중에 의해 모형벽체에 작용하는 토압(I) (Earth Pressure Acting on the Model Wall due to Repeating Surcharge Load(I))

  • 전용백
    • 한국산업융합학회 논문집
    • /
    • 제5권1호
    • /
    • pp.65-74
    • /
    • 2002
  • This paper intends to investigate such effects through experiments. The contents of the investigation are effects of position of repeated loading and unloading, passing frequency. For the purpose of the investigation an experimental load-deflection system is developed and the system is possible to measure deflection of the wall and earth pressure due to different size of strip loading and cyclic loading. The findings from the experiments are as follows: 1. As repeated loading approaches to the wall, the measured horizontal residual earth pressure agrees well with Rowe's empirical formula, while as the loading is far from the wall the earth pressure consists with Boussinesq's and Spangler's formulas. Also it is found that below 0.6m depth from ground surface the effects of repeated loading can be nearly neglected. 2. From comparison analyses of earth pressure theories and experimental results, a reagression equation is suggested herein, and earth pressure at any depth and maximum earth pressure due to cyclic loading can be estimated from the equation.

  • PDF

석고보드와 결합된 강재 샛기둥 패널의 부분 합성거동 (Partial Composite Action of Gypsum-Sheathed Cold-Formed Steel Wall Stud Panels)

  • 이영기
    • 한국강구조학회 논문집
    • /
    • 제13권4호
    • /
    • pp.373-380
    • /
    • 2001
  • 본 연구에서는 벽 패널의 부분 합성거동 해석에 대하여 거론한다. 기 발표된 목재 바닥 시스템으로부터 유도된 처짐공식을 소개하고, 이 공식을 적용하여 석고보드와 강재 샛기둥으로 결합된 합성벽 패널의 중앙지점 처짐값을 산정한다. 나사연결부의 불완전성(미끄럼), 국부좌굴, 샛기둥 복부의 개구부, 그리고 인접 석고보드간의 불연속으로 야기 될 수 있는 강성의 감소 등을 처짐공식에 적절히 반영하는데 그 목적을 두었다. 적용된 처짐공식으로 산정된 처짐 기대치와 실험 관측치간의 비교에서는, 나사연결부의 상한 강성치를 사용한 처짐 기대치가 실험 관측치와 가장 근접한 결과를 보였다.

  • PDF