• 제목/요약/키워드: Wall deflection

검색결과 137건 처리시간 0.025초

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

타이백 억지토류벽에서 앵커 자유장 및 앵커하중의 크기와 벽체변위와의 상관성 (A Relation between Anchor Unbonded Length, Anchor Loads, and Wall Deflection in Tieback Anchored Wall)

  • 임유진
    • 한국지반공학회논문집
    • /
    • 제15권6호
    • /
    • pp.187-200
    • /
    • 1999
  • 타이백 앵커 억지 토류벽의 거동을 분석하기위해 광범위한 현장계측자료를 조사하고 이중 한 현장에 대한 유한요소해석을 실시하였다. 특히, 임의 굴착깊이에 대한 벽체변위-앵커자유장-앵커긴장하중 사이의 상관성을 조사하였다. 유한요소해석은 앵커하중과 앵커자유장을 변화시키면서 벽체변위의 증감을 조사하기 위해 실시하였다. 굴착깊이로 정규화시킨 횡방향 벽체 변위와 앵커위치의 상관도를 작성하였으며 임의 굴착깊이에 대한 벽체변위-앵커자유장-앵커긴장하중 사이에 고유한 관계가 설정됨을 확인하였다. 차후 실무차원에서 이를 활용하기 위해서는 더 많은 현장계측자료의 집적과 유한요소해석의 추가적인 실시가 필요하다.

  • PDF

A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation

  • Xiang, Yuzhou;Goh, Anthony Teck Chee;Zhang, Wengang;Zhang, Runhong
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.315-324
    • /
    • 2018
  • With rapid economic growth, numerous deep excavation projects for high-rise buildings and subway transportation networks have been constructed in the past two decades. Deep excavations particularly in thick deposits of soft clay may cause excessive ground movements and thus result in potential damage to adjacent buildings and supporting utilities. Extensive plane strain finite element analyses considering small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by diaphragm walls and bracings. The excavation geometrical parameters, soil strength and stiffness properties, soil unit weight, the strut stiffness and wall stiffness were varied to study the wall deflection behaviour. Based on these results, a multivariate adaptive regression splines model was developed for estimating the maximum wall deflection. Parametric analyses were also performed to investigate the influence of the various design variables on wall deflections.

측벽 밀링에서 공구 변형 및 형상 정밀도 (Tool Deflection and Geometrical Accuracy in Side Wall Milling)

  • 류시형;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

깊은 굴착시 버팀대 선행하중과 흙막이 구조물과의 상호 관계 (Correlation between Strut Preloading and Earth Retaining Structures in Deep Excavations)

  • 양구승;오성남
    • 한국지반공학회논문집
    • /
    • 제16권2호
    • /
    • pp.23-30
    • /
    • 2000
  • The use of strut-preloading method is gradually increasing in braced excavations in Korea. And it is necessary to analyze the effects of strut preloading on the wall deflection, wall bending moment and strut axial force, etc. In this study, by using the analysis method of beams on elasto-plastic foundations, measured data and calculated results of 2 sites are compared and parametric studies of correlation between preloading and earth retaining structures in sandy soils are carried out in strut preloading application. As results, about 50%~75% of design strut load is effective as preloading force in considering the displacement and member forces of earth retaining structures. And the effective stiffiness of strut should be at least 25% of th ideal value in order to restrain the excessive increase of wall deflection and bending moments. As one of some methods to prevent excessive movements in braced excavation, to preload the strut is confirmed as more effective way than to increase the stiffiness of strut in braced wall, if the excessive axial force of strut due to preloading can be avoided.

  • PDF

측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측 (Form Error Prediction in Side Wall Milling Considering Tool Deflection)

  • 류시형;주종남
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

버팀굴착시 버팀대 선행하중과 흙막이 구조물과의 상호 관계 (Correlation between Strut Preloading and Earth Retaining Structures in Braced Excavations)

  • 오성남;조현태;박기태;양구승
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.129-136
    • /
    • 1999
  • The use of strut preloading method is gradually increasing in braced excavations in Korea. And it is necessary to analyse the effects of strut preloading on the wall deflection, bending moment and strut axial force etc. In this study, by using the analysis method of beams on elasto-plastic foundations, parametric studies of correlation between preloading and earth retaining structures in sandy soils were peformed in strut preloading application. As results, about 50% of design strut load was effective as a preloading force in considering the displacement and member forces of structures. And at least the effective stiffness of strut should be over 25% of the ideal value in order to restrain the excessive increase of wall deflection and bending moments. In order to protect excessive movements in braced excavation, to preload the strut was rather effective way than to increase the stiffness of strut and braced wall, but the excessive axial force of strut should be checked simultaneously.

  • PDF

쏘일 네일링을 이용한 굴착토류벽의 거동 분석 (The behavior of excavation wall reinforced by Soil Nailing)

  • 김종수;최혁;전진규;이송
    • 한국지반환경공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.23-32
    • /
    • 2001
  • 본 연구에서는 매립토, 풍화토, 연암등으로 구성된 지반의 흙막이 가시설 시공에 쏘일네일링을 적용하였다. 굴착중 지반 및 네일의 거동특성을 분석하기 위하여 계측과 수치해석을 수행하였다. 계측은 경사계로부터 벽면의 변위를 측정하였고 변형률계를 네일에 설치하여 굴착중 발생하는 네일의 축력을 측정하였는데 네일에 작용하는 축력은 벽면의 변위와 비례하는 것으로 조사되었으며 네일에 작용하는 축력은 벽면가까이에서 최대로 측정되었다. 또한 수치해석과 실측치를 비교한 결과 벽체변위는 실측치와 일치하였으나 네일의 축력의 크기 및 축력이 발생하는 위치등은 계측치와 상당한 차이를 보이는 것으로 분석되었다.

  • PDF

측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건 (Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy)

  • 류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.