• Title/Summary/Keyword: Wall curvature

Search Result 196, Processing Time 0.033 seconds

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.

Effect of Well Curvature on Curved Duct Flows

  • Hong Seung-Gyu;Heo Gi-Hun;Lee Gwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-135
    • /
    • 1997
  • Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows. The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns. Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

  • PDF

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

Deformability and Confinement of Structural Wall with Boundary Element (단부횡보강된 구조벽의 변형능력 및 보강방법)

  • 강수민;박홍근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.349-361
    • /
    • 2003
  • For performance-base design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, nonlinear numerical analysis was performed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reiforcement and the length of boundary confinement were studied. Based on the findings, moment-curvature curves and curvature capacity for walls with a variety of re-bar arrangement was developed. By equalizing curvature capacity to demand, a design method which can determine the length of boundary confinement, was developed and for the effectiveness of boundary confinement and constructability, boundary confinement detail was proposed.

  • PDF

Clinical Review of Spontaneous Gastric Perforation in the Newborn (신생아 위 자연천공에 대한 임상적 고찰)

  • Hwang, Seung-Wook;Park, Jin-Young;Chang, Soo-Il
    • Advances in pediatric surgery
    • /
    • v.9 no.1
    • /
    • pp.30-34
    • /
    • 2003
  • Spontaneous gastric perforation in the newborn is a rare disease that requires early diagnosis and prompt surgical treatment. Between 1988 and 2001 at the Department of Pediatric Surgery. Kyungpool National University Hospital, 9 cases of spontaneous gastric perforation were treated. Seven were males and two females. The mean gestational age and birth weight were 36.7 weeks and 2,455 g respectively. All patients presented with severe abdominal distention and pneumoperitoneum on cross table lateral film of the abdomen. Perforations were located on the anterior wall along the greater curvature of the stomach in six and on the posterior wall along the greater curvature in two. One case showed two sites of perforation on the anterior and posterior wall along the greater curvature. Six patients were managed with debridement and primary closure and the others with debridement and partial gastrectomy. Peritoneal drainage was not performed. There were four deaths; two from sepsis due to leakage from the anastomotic site, one as a result of acute renal failure, and the other by associated respiratory distress syndrome. Spontaneous gastric perforation in the newborn is usually located along the greater curvature. Elevated intragastric pressure is a possible cause of the perforation. Poor prognosis is related to associated diseases and prematurity.

  • PDF

DNS of turbulent heat transfer in a concentric annulus (동심 환형관 내 난류 열전달의 직접 수치 모사)

  • Chung Seo Yoon;Sung Hyung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.827-830
    • /
    • 2002
  • A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at $Re_{Dh}=8900\;and\;Pr=0.71$ for two radius ratios ($R_{1}/R_{2}=0.1\;and\;0.5$) and $q^{\ast}=1.0$. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. The present numerical results show that the turbulent structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls.

  • PDF

Development of prediction model for pressure loss and cut-size of cyclone separator depend on wall curvature (사이클론 집진기의 벽면구배에 따른 압력손실과 컷-사이즈 변화 예측 모델 개발)

  • Heo, Kwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2676-2681
    • /
    • 2008
  • In previous studies, Convex cyclone are proposed to reduce pressure loss which are design cyclone wall with a single continuous curve. Studies about a prediction model for pressure loss and cut-size has focused on conventional cylinder-on-con cyclone. Therefore, the models do not perform well for uncommon design. In this study, a predict model for pressure loss and cut-size depend on cyclone wall curvature are developed. The tangential velocity below vortex-finder is obtained with consideration about friction area and momentum loss on the cyclone wall, and with this the variation of vortex-core and core velocity is obtained. Pressure loss is predicted using a Rankine vortex hypothesis. The prediction results are well agreed with experiments and CFD results.

  • PDF

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

Numerical Analyses on Wall-Attaching Offset Jet with Various Turbulent $k-{\varepsilon}$ Models and Skew-Upwind Scheme (다양한 $k-{\varepsilon}$ 난류모델과 Skew-Upwind 기법에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.224-232
    • /
    • 2000
  • Four turbulent $k-{\varepsilon}$ models (i.e., standard model, modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the turbulent flow of wall-attaching offset jet. For numerical convergence, this paper develops a method of slowly increasing the convective effect induced by skew-velocity in skew-upwind scheme (hereafter called Partial Skewupwind Scheme). Even though the method was simple, it was efficient in view of convergent speed, computer memory storage, programming, etc. The numerical results of all models show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show some deviations in ·second order (i.e., kinetic energy and its dissipation rate). Like the previous results obtained by upwind scheme, the streamline curvature modification results in better prediction, while the preferential dissipation modification does not.

Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment (미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석)

  • Choi Jae-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.