• 제목/요약/키워드: Wall Pressure

검색결과 2,451건 처리시간 0.026초

점증하중에 의한 강성벽체에 작용하는 토압 (Earth Pressures Acting on the Rigid Wall under Incremental Load)

  • 전용백;권욱화
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.247-254
    • /
    • 2002
  • This study has researched the following conclusion to compare to the existing theory and to examine lateral earth pressure, which have measured to add incremental load on sandy soil, and were different in types of compaction by modeling earth pressure test. Lateral earth pressure by incremental load shows that it is increasing at depth forty four centimeters as 2/3H point for wall high, and under 2/3 H point the variation of earth pressure on incremental load is not conspicuous. Therefor, the more a position of surcharge load is close with fixed wall, the more a variation of lateral earth pressure marks considerably. According to relative compaction density of soil, lateral earth pressure turns up larger effective value for layer compaction test to a thickness of thirty three centimeters than layer compaction test to a thickness of twenty centimeters by the roller.

  • PDF

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석 (NUMERICAL ANALYSIS OF BLOOD FLOW DYNAMICS AND WALL MECHANICS IN A COMPLIANT CAROTID BIFURCATION MODEL)

  • 투안;이상욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.500-503
    • /
    • 2011
  • Blood flow simulations in an idealized carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flowrates and pressure in the carotid arteries were imposed for the boundary conditions. Comparing to rigid wall model, generally, we could find an increased recirculation region at the carotid bulb and an overall reduced wall shear stress. Also, there was appreciable change of flowrate and pressure waveform in longitudinal direction. Solid and wall shear stress concentration occurs at the bifurcation apex.

  • PDF

굴착모형실험을 통한 토류벽체 및 지반거동에 관한 연구 (Model Tests for The Behavior of Propped Retaining Walls in Sand)

  • 이봉열;김학문
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.259-279
    • /
    • 1999
  • 본 연구에서는 다단계 굴착시 연성토류 벽체의 수평변형, 굴착단계별 토압변화 및 분포, 그리고 배면지반의 지표침하와 지중변위의 분포를 규명하기 위하여 벽체강성, 벽마찰의 유무 및 지반조건에 대하여 굴착모형실험을 실시하였다. 모형실험 결과 벽체강성 및 벽체와 배면지반의 벽마찰각에 유무에 따른 지표침하 형태는 다소 차이를 나타내었으며, 지중변위 결과는 최대지중변위의 발생심도는 심도비 0.1H에서 0.15H(H는 최종굴착심도)의 범위에서 나타났다. 그리고 벽체의 강성에 따라 배면지반의 토압재분배 현상인 아칭효과는 벽체강성과 지반조건에 직접적인 관계가 있음을 확인할 수 있었다. 모형실험에서 얻은 벽체변위 및 토압분포는 기존 탄소성보법 프로그램으로 또한 지표침하 및 지중변위는 본 연구진에 의해 개발된 GDHM 재료모델을 이용한 유한요소법 프로그램으로 각각 비교분석하였다. 기존 탄소성보법 프로그램을 이용하여 모형실험을 해석한 결과 벽체변위 및 토압분포는 모형실험 결과와 상이한 결과를 얻었으며, GDHM 재료모델을 적용한 유한요소해석에서는 벽체수평변위의 형태는 다소 상이한 결과를 얻었으나 배면지반의 지중변위 분포는 벽체강성에 따라서 유사한 결과를 얻었다.

  • PDF

선반식 옹벽의 수평토압에 관한 모형시험과 수치해석 비교 (Comparison of the Lateral Earth Pressure on the Retaining Wall with the Relieving Platform by Model test and Numerical Analysis)

  • 유완규;김병일;문인종;박용석
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2382-2389
    • /
    • 2012
  • 일반적으로 높이가 높아짐에 따라 옹벽의 안정성과 경제성은 작아지는데 이런 경우 선반식 옹벽이 효과적으로 사용될 수 있다. 선반식 옹벽의 선반은 전체 토압을 감소시켜주어 옹벽의 안정성을 향상시켜준다. 이 연구에서는 일반적으로 선반이 설치되는 위치인 지표면으로부터 0.4H지점에 선반을 설치한 선반식 옹벽과 캔틸레버식 옹벽에 작용하는 토압분포에 대한 모형시험 결과를 수치해석 프로그램과 이론해를 이용한 토압과 비교하여 선반식 옹벽에 발생하는 토압 경감효과를 확인하고자 하였다. 모형시험결과와 유한요소해석 프로그램 및 이론해에 의한 토압산정 결과를 종합해 볼 때 선반식 옹벽은 캔틸레버식 옹벽에 비해서 수평토압이 감소하는 것을 알 수 있고, 선반을 설치하여 발생하는 토압의 감소효과는 뚜렷한 것으로 나타났다.

디퓨저에서 벽면으로의 방출유로에서의 압력손실 (Pressure Loss in the Discharge Flow Path from a Diffuser to a wall)

  • 이준;김영인;김성훈;이두정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.517-522
    • /
    • 2001
  • The exit edges of a diffuser are smoothly rounded, and a wall is located perpendicularly to a diffuser exit. The fluid is discharged towards the radial direction of a diffuser after impinging against a wall from a diffuser. In this flow path, pressure loss coefficients have been calculated by the variables of Reynolds number at a diffuser inlet, distance between a diffuser exit and a wall, and turbulence models. As a result, it was calculated that $h/D_0$ ratio between $0.35\sim0.4$ has the minimum pressure loss coefficient regardless of Reynolds number and turbulence models. It was also found that in case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG $k-\varepsilon$ model have a tendency to be near to those by standard $k-\varepsilon$ model at small ratio of $h/D_0$, but to those by RSM at large ratio.

  • PDF

안정사면에 인접한 옹벽에 작용하는 수평토압 (Lateral Pressure on Retaining Wall Close to Stable Slope)

  • 정성교;정진교;이만렬
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF

고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성 (Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments)

  • 임경훈;이봉수;김종현;구자예
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

Study on Effects of Pressure Ratio on the Wall-impingement Spray Characteristics of Nitrogen Gas using CNG Injector

  • Pham, Quangkhai;Chang, Mengzhao;Choi, Byungchul;Park, Suhan
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, an experimental investigation on the effects of the pressure ratio on the wall-impingement spray characteristics of nitrogen gas using a compressed natural gas (CNG) injector was conducted. The transient development of the impingement spray was recorded by a high speed camera with Z-type Schlieren visualization method. The spray behavior under various pressure ratio conditions were analyzed. The experimental results showed that the pressure ratio has positive effect on the development of spray wall-impingement. The effects of the above factor were evaluated in a constant volume chamber at atmospheric conditions. The data from test showed that, with the increase of the pressure ratio, the spray tip penetration (STP) quickly increases before the impingement and gradually increases after the impingement. Additionally, the spray velocity first increases and then sharply decreases on regardless of the injection pressure level. As the spray spreading angle increases, spray area and volume increases rapidly with the increase in STP at the beginning of injection, and finally entered a stable range, has a great correlation with the increase of pressure ratios.

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.