• 제목/요약/키워드: Wall Loss

검색결과 785건 처리시간 0.024초

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.

Aerosol Wall Loss in Teflon Film Chambers Filled with Ambient Air

  • Lee Seung-Bok;Bae Gwi-Nam;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E1호
    • /
    • pp.35-41
    • /
    • 2004
  • Aerosol wall loss is an important factor affecting smog chamber experiments, especially with chambers made of Teflon film. In this work, the aerosol wall loss was investigated in 2.5 and $5.8-m^3$ cubic-shaped Teflon film chambers filled with ambient air. The natural change in the particle size distribution was measured using a scanning mobility particle sizer in a dark environment. The rate of aerosol wall loss was obtained from the deposition theory suggested by Crump and Seinfeld (1981). The measured rates of aero-sol wall loss were In a good agreement with the theoretical and experimental values given by McMurry and Rader (1985), implying that the electrostatic effect enhances particle deposition on the chamber wall. The significance of aerosol wall loss correction was demonstrated with the photochemical reaction experiments using the ambient air.

KHST 차량 벽면의 투과손실값 예측 (Transmission Loss Prediction of KHST's Wall Section)

  • 김관주;윤태중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.104-109
    • /
    • 2002
  • The purpose of this study is to calculate transmission loss of KHST passenger vehicle's wall section accurately Typical transmission loss measurement of wall in the laboratory condition was carried out in advance, which is easier than KHST. Transmission loss results were compared with those by statistical acoustic method. Transmission loss values of KHST calculated by experimental method are compared with those from closed form solution.

  • PDF

사이클론 집진기의 벽면구배에 따른 압력손실과 컷-사이즈 변화 예측 모델 개발 (Development of prediction model for pressure loss and cut-size of cyclone separator depend on wall curvature)

  • 허광수;설승윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2676-2681
    • /
    • 2008
  • In previous studies, Convex cyclone are proposed to reduce pressure loss which are design cyclone wall with a single continuous curve. Studies about a prediction model for pressure loss and cut-size has focused on conventional cylinder-on-con cyclone. Therefore, the models do not perform well for uncommon design. In this study, a predict model for pressure loss and cut-size depend on cyclone wall curvature are developed. The tangential velocity below vortex-finder is obtained with consideration about friction area and momentum loss on the cyclone wall, and with this the variation of vortex-core and core velocity is obtained. Pressure loss is predicted using a Rankine vortex hypothesis. The prediction results are well agreed with experiments and CFD results.

  • PDF

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

Sound Absorption Rate and Sound Transmission Loss of CLT Wall Panels Composed of Larch Square Timber Core and Plywood Cross Band

  • Kang, Chun Won;Jang, Sang Sik;Kang, Ho Yang;Li, Chengyuan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.33-39
    • /
    • 2019
  • The square timbers of larch having cross section of $90mm{\times}90mm$ were glued laterally to be formed $1,200mm{\times}2,400mm$ panels which were used as cores for CLT wall panels. Then, structural plywood panels having size of $1,200mm{\times}2,400mm$ were used as cross band covering the small square timber cores to manufacture CLT wall panels. The sound absorption rate of CLT wall panels and polyester board attached CLT wall panels were investigated. The mean sound absorption coefficients of the former and the latter in the frequency range of 100-6400 Hz were 0.21 and 0.74, respectively. The noise reduction coefficients (NRC) of those were 0.21 and 0.40, respectively. Also, the mean sound transmission loss of CLT wood panel in the frequency range of 50-1600 Hz was 45.12 dB and that value at the frequency of 500 Hz was 42.49 dB. It was suggested that the polyester board attached CLT wall panels could be used as housing wall because of its high sound absorption rate and high sound transmission loss.

탄성채널을 이용한 석고보드 건식벽체의 저주파 대역 차음성능 개선 (Improvement of Sound Insulation at Low Frequencies Using Resilient Channel)

  • 김경호;전진용
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.94-99
    • /
    • 2017
  • Breaking the rigid connection between the two faces of the wall can significantly improve the sound transmission loss of the wall. This is usually achieved by resiliently mounting the gypsum board on one of the two faces of the wall using resilient channel. Resilient channel with less stiffness than that of air cavity could move the resonance frequency of the light-weight wall. So we can get higher sound transmission loss at low frequencies for light-weight wall using resilient channel. It's sound transmission loss is 17 dB higher than that of single stud wall, and 5 dB higher than that of double stud wall.

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

연속적인 곡선으로 정의 되는 볼록한 형상의 사이클론에 대한 연구 (Study of Convex Cyclone with Continuous Curve)

  • 허광수;설승윤;리진철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2757-2762
    • /
    • 2007
  • A cyclone design concept named Convex cyclone was developed to reduce pressure losses. Contrary to conventional cylinder-on-con type cyclone, inner wall of Convex cyclone are defined with a continuous curve and it has convex shape body. The discontinuity of inner diameter variation rate of cylinder-on-con type cyclone cause additional pressure loss. Continuous wall of Convex cyclone prevent additional pressure loss. In order to verify Convex cyclone design concept, we make a comparative experiments between Stairmand HE and Convex cyclone. Experimental Convex cyclone designed based on Stairmand HE model, and inner wall are defined with circular arch. The experimental result clearly shows that Convex cyclone can achieve maximum 50% pressure loss reduction with a few percent of collection efficiency drop. In addition, the experimental results indicated the existence of optimum convexity, minimum pressure loss, of cyclone wall.

  • PDF