• Title/Summary/Keyword: Wall Jet

Search Result 363, Processing Time 0.024 seconds

The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity (비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석)

  • Lee, S.S.;Kim, K.M.;Kim, B.G.;Chang, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF

Flow Field Change before Onset of Flow Separation

  • Hasegawa, Hiroaki;Sugawara, Takeru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.215-222
    • /
    • 2009
  • Jets issuing through small holes in a wall into a freestream has proven effective in the control of flow separation. This technique is known as the vortex generator jet (VGJs) method. If a precursor signal of separation is found, the separation control system using VGJs can be operated just before the onset of separation and the flow field with no separation is always attained. In this study, we measured the flow field and the wall static pressure in a two-dimensional diffuser to find a precursor signal of flow separation. The streamwise velocity measurements were carried out in the separated shear layer and spectral analysis was applied to the velocity fluctuations at some angles with respect to the diffuser. The pattern of peaks in the spectral analysis changes as the divergence angle increases over the angle of which the whole separation occurs. This change in the spectral pattern is related to the enhancement of the growth of shear layer vortices and appears just before the onset of separation. Therefore, the growth of shear layer vortices can be regarded as a precursor signal to flow separation.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Unusual Necrotizing Uterine Adenocarcinoma in a Dog

  • Kim, Tae-Jung;Shin, Sung-Shik;Park, Sang-Ik
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.325-329
    • /
    • 2017
  • A 2-year-old female Maltese dog was admitted with a history of pyometra and resulting peritonitis and septicemia. Uterine specimen sampled by ovariohysterectomy was processed routinely for histopathological observation. Grossly, the uterine mucosa was covered with necrotic debris and on the cut surface, lesion extended into the uterine wall. Microscopically, severe necrosis was observed throughout thickened mucosa, submucosa, and wall of uterus. Tumorous lesions composed of anaplastic cells with bizarre nuclei or tubular structures of cuboidal to short columnar cells were infrequently observed around the necrotic lesions and muscular layer far from necrotic areas. Immunohistochemically, central necrotic area with ambiguous cell and tissue structures, peri-necrotic tumor lesions, and muscular layer were strongly positive for cytokeratin. Since huge necrosis of adenocarcinoma lesions in this case made it difficult to diagnose, immunohistochemical results enable to diagnose as a severe necrotizing adenocarcinoma. Thus, histopathological and immunohistochemical findings in this case may serve as an important knowledge to diagnose uterine adenocarcinoma with huge necrosis in the veterinary field.

Effect of an aspect ratio on thermal stratification in a solar seasonal thermal storage tank (태양열 계간 축열조 내부 열성층화에 대한 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, we numerically investigated the thermal stratification in solar seasonal thermal storage tanks. The vertical in/out flows were unsuitable for the thermal stratification in a large scale. The effect of an aspect ratio (AR) on the thermal stratification was investigated. When AR was less than 2, water adheres and flows along the upper wall due to buoyance and the surface effect. Thereafter, hot water flows down and a large scale vortex occurs in entire tank. For high AR, jet flows ejected from the inlet pipe impinges to the opposite wall and splits. The divided flows create two vortex flows in the upper and lower regions. These different flows strongly influence temperature and thermal stratification. The thermal stratification was evaluated in terms of the thermocline thickness and degree of stratification. Compared to ARs, the maximum degree of stratification was obtained with AR of 5 having the minimum thermocline thickness.

Physicochemical Properties of Hull-less Barley Flours Prepared with Different Grinding Mills (제분방법에 따른 쌀보리가루의 이화학적 특성)

  • Lee, Young-Tack;Seog, Ho-Moon;Cho, Mi-Kyung;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1078-1083
    • /
    • 1996
  • During the pearling process of hull-less barley, protein, lipid, ash and insoluble dietary fiber (IDF) contents decreased, while soluble dietary fiber (SDF) and ${\beta}-glucan$ contents slightly increased. Depending on milling methods and types of grinding mills used, there were differences in particle size distribution of barley flour. Flour particle size was smaller in the following order of Fitz mill, Ball mill, Pin mill, Cyclotec sample mill and Jet mill. Color (brightness) was closely related to the particle size of barley flour. Damaged starch (%) in pearled barley flour was the highest in Jet mill among different mills. Flours prepared with Cyclone mill and Pin mill had a reasonable amount of damaged starch. Flour produced by Fitz mill showed the lowest amount of damaged starch. Scanning electron microscopy (SEM) of the flour samples demonstrated different sizes and shapes of particles consisting of starch granules and cell wall materials. Damaged starch tended to increase water absorption index (WAI), water solubility index (WSI), and water retention capacity (WRC). Pasting viscosity determined by amylograph was relatively high in Pin-milled and Cyclone-milled flours. Viscosity was the lowest in coarsely ground flour by Fits mill.

  • PDF

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

A Study on Flame Stabilization in the Axisymmetric Curved Wall Jet (축대칭 곡면벽 제트 유동장에서 화염 안정화에 관한 연구)

  • Gil, Yong-Seok;Cha, Min-Seok;Song, Yeong-Hun;Han, Jae-Won;Jeong, Seok-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.51-60
    • /
    • 1997
  • 축대칭 곡면벽 제트 버너를 제작하여 화염의 안정화 특성을 실험적으로 연구하였다. 축대칭 곡면벽 제트 유동은 난류 강도의 증가와 더불어 버너 선단 부근에 재순환 영역을 형성하여 화염의 안정화를 촉진시킴으로서 기존의 튜브 버너에 비하여 화염의 안정화 특성이 향상되었다. 시간적으로 화염의 위치가 변동하는 난류 화염에서 화염의 안정화 특성과 밀접한 관계가 있는 OH 라디칼과 온도를 PLIF와 CARS를 각각 적용하여 측정하였다. 고유속으로 연소시키는 경우에 버너 선단에 형성된 재순환 영역에 OH 라디칼이 상당량 분포하고 있었으며 통계적으로 고온을 유지하였다. 이는 버너 선단에 형성되는 재순환 영역에 고온의 기연 가스가 점화원 역할을 하여 화학 반응이 활발하게 일어나고 있음을 의미한다. 이러한 결과로부터 고속의 출구유속에서 화염 안정화 특성은 재순환 영역에 의하여 영향을 받고 있음을 확인하였다.

  • PDF

Computation of Supersonic Ramp Flow with V2F Turbulence Mode (V2F 난류모형을 이용한 초음속 램프유동의 해석)

  • Park C. H.;Park S. O.
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • The V2F turbulence model, which has shown very good performance in several test cases at low speeds, has been applied to supersonic ramp flow with 20. corner angle at the free stream Mach number of 2.79. The flow is known to manifest strong shock wave/turbulent boundary layer interactions. As a comparative study, low-Reynolds k-ε models are also considered. While the V2F model predicts wall-pressure distribution well, it relatively predicts larger separation bubble and higher skin-friction after the reattachment than the experimental data. Although the ellpticity of f equation is the characteristics of incompressible flows, the converged solutions are acquired in the compressible flow with shock waves. The effect of the realizability constraints used in the model is also examined. In contrast to the result of impinging jet flows, the realizability bounds proposed by Durbin deterioate the overall solutions of the supersonic ramp flow.