• Title/Summary/Keyword: Wall Injection

Search Result 446, Processing Time 0.024 seconds

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Therapeutic Anti-inflammatory Effect of Ginkgo Terpene on Arthritis due to Candida albicans (Ginkgo Terpene의 Candidate albicans로 인한 관절염에 대한 치료효과)

  • Lee, Soon-Hyun;Lee, Jue-Hee;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.140-146
    • /
    • 2005
  • Candida albicans, a polymorphic fungus, causes systemic and local infections. Recent reports show that the fungus is a main etiological agent for the arthritis. For trea tment, antifungal drugs and/or rheumatoid drugs are used, but resistance and side effects limit application of the drugs. In search of new sources for treatment of the fungal arthritis, we choose Egb 761 (extract of Ginkgo leaves 761), one of the most popular over-the-counter herbal medicines. The Egb 761 contains two major ingredients such as terpene and flavonoid. In the present study, we examined if the terpene portion of Egb 761 had anti-inflammatory activity against C.albicans-caused arthritis. The terpene was extracted with combination of methanol and water from the Egb 761, followed by gel-permeation chromatography. Presence of terpene was determined by the Salkowski colorimetric method and HPLC analysis. For an animal model of inflammation induction, mice were given an emulsion form of C.albicans cell wall mixed with Complete Freund's Adjuvant (CFA) by footpad-injection. Results showed that intraperitoneal administration of the water-soluble portion that contained terpene and flavonoid reduced the inflammation. Whereas the terpene had anti-inflammatory activity, flavonoid portion had no such activity, For determination of possible mechanism of the activity, the terpene seemed to be suppression of nitric oxide (NO) production from LPS-treated macrophages. Taken together the Ginkgo terpene may have anti-inflammatory effect against C.albicans-caused arthritis, possibly by blocking NO production.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Mechanisms of Motility Change on Trinitrobenzenesulfonic Acid-Induced Colonic Inflammation in Mice

  • Cheon, Gab Jin;Cui, Yuan;Yeon, Dong-Soo;Kwon, Seong-Chun;Park, Byong-Gon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.437-446
    • /
    • 2012
  • Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to $Ca^{2+}$ and $Na^+$ influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

The Effects of Taurine and $\beta$-alanine on Blood Glucose and Blood Lipid Concentrations in Insulin-treated Diabetic Rats (실험적 당뇨쥐의 인슐린 치료시 타우린과 베타알라닌이 혈당 및 혈중 지질대사에 미치는 영향)

  • 장경자
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.1
    • /
    • pp.103-110
    • /
    • 1999
  • The purpose of this study was to determine the effects of taurine supplementation and taurine depletion on blood glucose and blood lipid concentrations in insulin-treated diabetic rats. Four groups of Sprague-Dawley male rats were fed the purified diet for 3 weeks ; nontaurine-supplemented diabetic rats(E0), nontaurine-supplemented diabetic rats with insulin treatment(E0+I), 1% taurine-supplemented diabetic rats with insulin treatment(E1+I) and taurine-depleted diabetic rats with insulin treatment(EA+I). Diabetes was induced by streptozotocin injection(50mg/kg B.W.). Isophane insulin was given subcutaneously into the abdominal wall of the diabetic rats(4 unit/rat/day). E1+I were supplemented with 1% taurine in drinking water. To induce taurine depletion, EA+I were treated with 5% $\beta$-alanine in drinking water. E1+I had significantly higher body weight compared to that of E0. The food intakes of E1+I and E0+I were significantly decreased compared to that of E0. There was no sigfniciant difference in food intake between E1+I and E0+I. The water intake of rats was significantly different among the groups ; E0>E0+I>E1+I>EA+I. The urine volume of E0 was significantly increased compared to those of insulin-treated goups. The blood glucose concentration of E0 was significantly increased compared to those of insulin-treated groups. In the oral glucose tolerance test(OGTT), E0+I and E1+I had significantly lower blood blucose concentrations compared to E0 after 30 min. Also EA+I had significantly lower bloodglucose concentrtion compared to E0 and E0+I. The plasma total cholesterol and LDL-cholesterol concentratons of EA+I were significantly incrased compared to those of other groups. Therefore, it may be suggested that tuarine supplementation is useful for insulin-dependent diabetes in order to prevent diabetic complications suchas cardiac vascular diseases.

  • PDF

A Study on the Characteristics of Temperature Distribution Related to Geometry of Tube in Hydrogen Storage Vessel (수소 저장용 탱크의 튜브 형상에 따른 온도분포 특성에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;JEON, KYUNG SOOK;KIM, JAE KYU;PARK, JOON HONG;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.205-211
    • /
    • 2021
  • Recently, it is necessary for study on renewable energy due to environmental pollution and fossil fuel depletion. Therefore, in this study, the filling temperature according to the nozzle geometry was evaluated based on the limit temperature specified in SAEJ2601 for charging hydrogen, a new energy. There are three types of nozzles, normal, angle and round, fixed the average pressure ramp rate at 52.5 MPa/min, and the injection temperature was set at 293.4 K. As a result, the lowest temperature distribution was found in the round type, although the final temperature did not differ significantly in the three types of nozzles. In addition, Pearson's coefficient was calculated to correlate the mass flow rate with the heat transfer rate at the inner liner wall, which resulted in a strong linear relationship of 0.98 or higher.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

Serratus Anterior Plane Block: A Better Modality of Pain Control after Pectus Excavatum Repair

  • Eun Seok Ka;Gong Min Rim;Seungyoun Kang;Saemi Bae;Il-Tae Jang;Hyung Joo Park
    • Journal of Chest Surgery
    • /
    • v.57 no.3
    • /
    • pp.291-299
    • /
    • 2024
  • Background: Postoperative pain management following minimally invasive repair of pectus excavatum (MIRPE) remains a critical concern due to severe post-procedural pain. Promising results have been reported for cryoanalgesia following MIRPE; however, its invasiveness, single-lung ventilation, and additional instrumentation requirements remain obstacles. Serratus anterior plane block (SAPB) is a regional block technique capable of covering the anterior chest wall at the T2-9 levels, which are affected by MIRPE. We hypothesized that SAPB would be a superior alternative pain control modality that reduces postoperative pain more effectively than conventional methods. Methods: We conducted a retrospective study of patients who underwent MIRPE between March 2022 and August 2023. The efficacy of pain control was compared between group N (conventional pain management, n=24) and group S (SAPB, n=26). Group N received intravenous patient-controlled analgesia (IV-PCA) and subcutaneous local anesthetic infusion. Group S received bilateral continuous SAPB with 0.3% ropivacaine after a bilateral bolus injection of 30 mL of 0.25% ropivacaine with baseline IV-PCA. Pain levels were evaluated using a Visual Analog Scale (VAS) at 1, 3, 6, 12, 24, 48, and 72 hours postoperatively and total intravenous rescue analgesic consumption by morphine milligram equivalents (MME). Results: Mean VAS scores were significantly lower in group S than in group N throughout the 72-hour postoperative period (p<0.01). Group S showed significantly lower MME at postoperative 72 hours (group N: 108.53, group S: 16.61; p<0.01). Conclusion: SAPB improved immediate postoperative pain control in both the resting and dynamic states and reduced opioid consumption compared to conventional management.

Myocardial Tracer Uptake in SPECT Images after Direct Intracoronary Injection Of TI-201: Comparison with Stress-Reinjection Images (관동맥내 주사 TI-201 SPECT에서 심근 분절의 섭취: 부하-재주사 TI-201 영상과의 비교)

  • Seo, Ji-Hyoung;Kang, Seong-Min;Bae, Jin-Ho;Lee, Yong-Jin;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Cho, Yong-Geun;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • Purpose: To investigate the feasibility of TI-201 SPECT with intra coronary injection (lC-I) in the detection of viable myocardium, we have performed SPECT imaging after direct intracoronary injection of TI-201 and images were compared with those of stress-reinjection (Re-I) SPECT. Methods: Fourteen coronary artery disease patients (male 11, mean age 54 years) who had myocardial infarction or demonstrated left ventricular wall motion abnormality on echocardiography were enrolled. Three mCi of TI-201 was injected into both coronary arteries during angiography and images were acquired between 6- and 24-hour after injection. Reinjection imaging with 1 mCi of TI-201 was performed at 4-hour after adenosine stress imaging with 3 mCi of TI-201. Images were interpreted according to 4-grade visual scoring system (grade 0-3). Segments with mild to moderated uptake (${\leq}$grade 1), and upgraded more than one score with reinjection, and were defined as viable myocardium. Results: Image quality was poor in two cases with IC-I. Numbers of non-viable segments were 60 (23.8%) with IC-I, and 38 (15.1%) with Re-I, respectively. Overall agreement for perfusion grade per myocardial segment in each IC-I and Re-I was 76.5%. Overall agreement for viable segment between IC-I and Re-I was 90.5%. Only one out of 38 segments interpreted as non-viable with Re-I were interpretated as viable with IC-I. And 23 out of 214 segments interpreted as viable with Re-I were interpreted as non-viable with IC-I. Conclusion: Intracoronary TI-201 SPECT seemed to be not advantageous over stress-rest reinjection imaging in the assessment of myocardial viability, mainly due to low count statistics at 6-hour or 24-hour delayed time points. The feasibility of intracoronary TI- 201 SPECT is considered to be limited.