• Title/Summary/Keyword: Wall Fire

Search Result 356, Processing Time 0.029 seconds

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building (초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구)

  • Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Recently the interest in disaster prevention on super tall buildings is increasing. Especially in fire, against increasing of evacuation time due to high-rise, It is being tried to minimize the fire spread in building. Fire compartments using the fire-resistant wall and door, typical method to control the fire spread in buildings, delay the fire spread to other compartments and consequently evacuation time increases. But the existing provisions adjure only 2-hour fire resistance with maximum limit regardless of the super tall buildings, so this is a obstacle for research and development of the fire resistance wall in super tall buildings. In this study, we reviewed the fire resistance ratings of the wall, and presented the development directions for the fire resistance wall in super tall buildings considering fire resistance, construction and application of the wall.

An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method (건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.75-85
    • /
    • 2018
  • The Grenpell tower fire in England in June of 2016 is a representative example of damage caused by a vertical fire spreading through external insulation. Organic insulation materials, which are widely used in external insulation, have the disadvantage that they have good insulation performance but are vulnerable to fire. Aluminum composite panels are used as exterior wall finishing materials, and plastics used in aluminum are regarded as the cause of vertical fire spread. Due to the steel frame used to secure the aluminum composite panel to the outer wall, a cavity is formed between the outer wall and outer wall finish. When a fire occurs on the outer wall, the flammable outer wall as well as the flame generated from the heat-insulating material spreads vertically through the cavity, resulting in damage to people and property. In Korea, material unit performance tests are carried out by the Ministry of Land, Infrastructure and Transport notice 2015 - 744. However, in the UK, the BS 8414 test is used to measure the vertical fire spreading time on the outer wall in real scale fire tests. In this study, the risk of external wall fire was evaluated in an actual fire by conducting a real scale wall fire test (BS 8414), which was carried out in Europe, using aluminum composite panels of semi-noncombustible materials suitable for current domestic standards. The purpose of this study was to confirm the limitations of material unit evaluation of finishing materials and to confirm the necessity of introducing a system to prevent the spread of outer wall fire through an actual scale fire test.

A Study on the Fire Spread through Curtain Wall System with Fire Simulations (FDS) (화재 시뮬레이션(FDS)을 이용한 커튼월 구조의 화재 확산에 관한 연구)

  • Song, Young-Joo;Gu, Seon-Hwan;Kim, Hyun-Jin;Park, Deuk-Jin;Park, Jeong-Min
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • In this study, the fire risk of the curtain wall structure was compared with a general structure among the double envelope structure using a fire simulation program. To this end, a fire-story building curtain wall was modeled as virtual using the PyroSim based on a fire simulation program (FDS). And then, the fires occurred in the model, divided by curtain wall non-applied model and applied model, in the same structure and place. To identify the fire characteristics, smoke behavior characteristics, viewing distance, and volume fractions of CO and $CO_2$ were comparative analyzed. As a result, it was identified that the curtain wall applied model quickly filled with smoke from the top floor to under the floor compared to the curtain wall non-applied model. From this study, the fire risk of curtain wall structure was evaluated in detail using the fire simulations.

A Comparison of Fire Resistance for Wall According to Increase the Thickness of Gypsum Boards (석고보드 두께증가에 따른 벽체 내화성능 비교)

  • Choi, Dong-ho;Chol, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.95-96
    • /
    • 2019
  • In this study, fire resistance test according to KS F 2257-8: 2015 was carried out to compare fire resistance for wall consisted of gypsum boards with two types of drywall with gypsum boards which is based to lightweight studs. As a result, it was found that the fire resistance of the wall constructed with 12.5 mm of general gypsum board was 16 minutes higher than that of the wall constructed 9.5 mm in accordance with integrity and was 9 minutes higher than that of the wall(9.5 mm) depending on insulation. If the wall with the gypsum board 12.5 mm is constructed, it can be confirmed that the fire resistance is improved by about 43%.

  • PDF

A Study on the Damaged Pattern of Dryvit by External Flame (외부화염에 의한 드라이비트의 소손패턴 연구)

  • Park, Young Ju;Hong, Yi Pyo;Lee, Hae Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.40-47
    • /
    • 2015
  • In this study, temperature characteristics and fire damage form were analyzed to investigate flame spreading form and fire probability from ignition sources subject to drivit component materials which is finishing material in architecture. Ignition sources were limited to a gas torch and exterior panel board fire, and the size of the sample was manufacture in 30 cm length ${\times}$ 50 cm height ${\times}$ 5cm thickness size. Marble (inner wall) + 3 mm drivit (outer wall), marble (inner wall) + 4 mm plaster stone (outer wall), sandwich panel + 3 mm driver bit (outer wall), sandwich panel + 3 mm driver bit + insulation (outer wall), and gypsum board (inner wall) + 3 mm drivit (outer wall) were prepared for the sample. As result of the research for temperature characteristics, large temperature difference by each material was shown in $218^{\circ}C{\sim}995^{\circ}C$ at 30 seconds and $501^{\circ}C{\sim}1078^{\circ}C$ at 300 seconds. Especially when the inner wall was a plaster board, lowest temperature of $501^{\circ}C$ was shown at 300 seconds and marble inner wall showed the following lowest temperature of $900^{\circ}C$. Temperature rising over $1000^{\circ}C$ was shown in other materials. Regarding fire damage form, drivit or gypsum board outer wall parts exposed to fire showed combustion and carbonization to show calcination(breaking phenomenon) and influence of heat exposure was higher as calcination became more severe.

An Experimental Study on Fire Resistance Performance of Curtain-Wall System with Steel-Aluminum Hybrid Frame (스틸-알루미늄 복합 프레임을 갖는 커튼월의 내화성능에 관한 실험적 연구)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Cho, Bong-Ho;Kim, Heung-Yeal
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.104-111
    • /
    • 2011
  • Aluminum has been widely used as frame materials in the curtain walls. Recently, use of steel as a curtain wall frame is being considered due to its higher strength and thermal resistance than aluminum. In this study, fire tests on the basis of EN 13830 were performed with aluminum and steel-aluminum hybrid curtain walls. From the tests, fire resistance integrity, thermal insulation, and radiation properties were evaluated for both systems and compared. According to the test results, the steel-aluminum hybrid curtain wall showed better fire-performance than the typical aluminum curtain wall for the fire resistance integrity and radiation properties. Although, the fire resistance performance for the insulation property was 6 min for both the two frames, the collapses were occurred at 36 min for the steel-aluminum hybrid curtain wall and at 13 min for the aluminum hybrid curtain wall.

Numerical Study on Propylene Vertical Wall Fires (프로필렌 수직벽 화재의 수치적 연구)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.133-137
    • /
    • 2009
  • The Fire Dynamics Simulator (FDS), a computational fluid dynamics model for fire simulation, was applied to propylene vertical wall fires, to confirm its accuracy in simulation of vertical wall fires. The temperature profiles at the center of the burner obtained for mass loss rates per unit area in the range of $7.0{\sim}29.29g/m^2-s$ were compared with those of experiment. Comparisons of the heat flux distributions along the vertical centerline on the wall surface were made with the measurements. It was shown that the computed temperature profiles were in good agreement with the experiment. It was also noted that the peak temperature near the wall was underpredicted, the heat flux was too high compared with the measurements, and hence improvements are required for FDS in simulation of the vertical wall fires.

A Numerical Study of a Room Fire for Fire Sizes II. wall fire and corner fire (FDS를 이용한 실내화재 모사의 문제점 II. 벽면형 및 모서리형 화재)

  • Ko Kyung-Chan;Park Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.9-13
    • /
    • 2004
  • To confirm the previous finding that FDS predicts a fire growth rate too rapid compared with an experiment in a center fire in a room with an opening, the same computational fluid dynamics was applied to two types of fires, wall fire and comer fire. First the grid size was chosen to eliminate possible numerical errors due to a coarse grid system. Then the two types of fires were simulated for three different fire sizes, 7.65, 21.25, and 51.57kW for each type, which are the same as in the experiment to be compared with. The fires were predicted to grow too fist although the average temperatures and heights of the neutral planes were in good agreement with measurement.

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.