• 제목/요약/키워드: Wall Element

검색결과 1,253건 처리시간 0.028초

Computational material modeling of masonry walls strengthened with fiber reinforced polymers

  • Koksal, H. Orhun;Jafarov, Oktay;Doran, Bilge;Aktan, Selen;Karakoc, Cengiz
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.737-755
    • /
    • 2013
  • This paper aims to develop a practical approach to modeling of fiber reinforced polymers (FRP) strengthened masonry panels. The main objective is to provide suitable relations for the material characterization of the masonry constituents so that the finite element applications of elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane shear and compression. Two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses ${\sigma}_1$ and ${\sigma}_2$ on the yielding and the shape of the deviatoric section are then reflected into the analyses. Performing nonlinear finite element analyses (NLFEA) for the three walls tested in two different studies, their stress-strain response and failure modes are eventually evaluated through the comparisons with the experimental behavior.

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

수압작용에 따른 지반내 공동생성 및 수리거동에 대한 개별요소해석 (Distinct element simulation of cavity development and fluid behavior caused by fluid injection)

  • 전제성;김기영;김재홍;이종욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.676-679
    • /
    • 2008
  • Numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, 0.1MPa and 0.5MPa, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

  • PDF

TES 소성하중 기준의 감육엘보 기기건전성 평가 (Integrity Evaluation of Thinned Elbow Based on TES Plastic Load)

  • 이성호;박치용;이정근;박재학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.281-286
    • /
    • 2008
  • Wall thinning defect due to flow accelerated corrosion is one of major aging phenomena in most power plant industries, and it results in reducing load carrying capacity of the piping systems. A failure testing system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of thinned elbows. Various finite element models were generated and analysed to figure out and simulate the behavior for other thinning shapes and loading conditions. This paper presents the decreasing trends of load carrying capacity according to the thinning dimensions which were revealed from the investigation of finite element analysis results. A mechanical integrity evaluation model for thinned elbows was proposed, also. This model can be used to calculate the TES plastic load of thinned elbows for general internal pressure, thinning location, and in-plane bending direction.

  • PDF

Sub-modeling을 이용한 end-to-end 문합의 비선형 해석 (Nonlinear Analysis of End-to-End Anastomosis Using Sub-modeling)

  • 한근조;김태형;안성찬;심재준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.877-882
    • /
    • 2001
  • A finite element analysis of end-to-end artery/PTFE anastomosis has been presented in this study to evaluate the distribution of compliance and stresses in the vicinity of the anastomosis due to any mismatch in compliance characteristics. The artery wall was assumed to be made of linear isotropic material in this simplified model and a nonlinear analysis and convergency study with respect to increasing meshed element numbers were performed with a mean artery pressure loading of the artery-PTFE model. Also, sub-modeling method was introduced to progress the accuracy of the finite element analysis. The results are as follow : 1. A hypercompliant zone on the artery side was observed around 4.0mm from the anastomosis and a high hoop stresses in the wall of artery and PTFE was dominent. 2. An artery displays large deformation so that nonlinear analysis and sub-modeling method was used. 3. An anastomosis with the thinner thickness and larger diameter PTFE (C type) could reduce the compliance disagreement.

  • PDF

공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석 (Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber)

  • 홍사영;경조현;김병완
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

스트럿-타이 모델 방법에 의한 콘크리트 구조물의 해석 및 설계 (Analysis and Design of Concrete Structures with Strut-Tie Model Approach)

  • 윤영묵;박문호;박승진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 1995
  • This paper presents an evaluation of the strength and behavior of a tested simply supported rectangular reinforced eoncrete beam and a design example of a shear wall using two-dimensional strut-tie model with finite element nonlinear analysis. Strut-tie models reflecting the actual support and loading conditions are developed for the beam and shear wall. The strut-tie model not only provides simple solutions for large number of design situations dealing with the entire range of concrete structures which appear to be rather complicated but also predicts the behavior and strength of concrete members.

  • PDF

스트럿-타이 모델을 이용한 개구부를 갖는 전단벽의 전단 설계 (Shear Design of Reinforced Concrete Shear Walls with Openings using Strut-and-Tie Models)

  • 홍성걸;장상기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.244-247
    • /
    • 2004
  • This study proposes the design method of the shear walls with openings using strut-and-tie models. Strut-and-tie models are constructed for opening near the middle of the wall and for opening near a wall boundary. These enables an admissible load path for the horizontal earthquake force. These models consider the size and position of opening effectively. Each model is suitable for the seismic response corresponding with lateral forces in a given direction to be considered. The proposed models are good agreements with nonlinear finite element analysis(DIANA) results.

  • PDF

1:12축소 10층 R.C. 골조-벽식 구조의 비선형 거동 연구 (Study of Inelastic Responses of a 1:12 Scale 10-Story R.C. Frame-Wall Structure)

  • 이한선;김상호;유은진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.867-872
    • /
    • 2000
  • A 1:12 scale 10-story RC building structure was constructed and the experiment was performed. The test results are presented and compared with the results of the analysis conducted with DRAIN-2DX. It is concluded that some local deformations cannot be described reasonably with the wall model using only Plastic Hinge Beam-Column Element(TYPE02) in DRAIN-2DX whereas the strength and stiffness of the whole structure can be predicted with high reliability.