• Title/Summary/Keyword: Walking navigation

Search Result 78, Processing Time 0.026 seconds

Study on the Method to Create a Pedestrian Network and Path using Navigation Data for Vehicles (차량용 내비게이션 데이터를 이용한 보행 네트워크 및 경로 생성 기법)

  • Ga, Chill-O;Lee, Won-Hee;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In recent years, with increasing utilization of mobile devices such as smartphones, the need for PNS(Pedestrian Navigation Systems) that provide guidance for moving pedestrians is increasing. For the navigation services, road network is the most important component when it comes to creating route and guidance information. In particular, pedestrian network requires modeling methods for more detailed and vast space compared to road network. Therefore, more efficient method is needed to establish pedestrian network that was constructed by existing field survey and manual editing process. This research proposed a pedestrian network creation method appropriate for pedestrians, based on CNS(Car Navigation Systems) data that already has been broadly constructed. Pedestrian network was classified into pedestrian link(sidewalk, side street, walking facility) and openspace link depending on characteristics of walking space, and constructed by applying different methodologies in order to create path that similar to the movements of actual pedestrians. The proposed algorithm is expected to become an alternative for reducing the time and cost of pedestrian network creation.

Developing a "Walking" Navigator for Street Shoppers' (거리쇼핑용 보행자 네비게이션의 개발)

  • Hwang, Kee Yeon;Kang, Jun Mo;Lee, Jong Deok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.21-27
    • /
    • 2008
  • To respond to years-long economic decline in the downtown Seoul, it is necessary to lay out a scheme revitalizing downtown economy. It is called Wanavi and Shonavi system. When customers do shopping, it is the "Shonavi" that provides shopping information such as popular shop name, location, and commodity price to walkers in a real-time base. In addition, the walking navigation system called "Wanavi" is designed to provide access information for walking shoppers, the function of which is similar to car navigation system. The "Wanavi" can help walkers find the fastest, comfortable and attractive pedestrian route and public transportation information reaching to the destination in the downtown. In this study, we propose GPA & RFID mixed system as a communication technique to activate "Shonavi" and "Wanavi" system. The "Shonavi" and "Wanavi" system will be one of the ways to revitalize depressed downtown economy in Seoul.

A Study on the walking convenience of passenger at ferry terminal (페리터미널 이용객의 보행 편리성에 대한 연구)

  • ;Kim, Hwa-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.19-19
    • /
    • 2020
  • 페리는 도서지역과 도시를 연결하는 중요한 교통수단이다. 최근에는 섬 관광, 낚시객 등이 늘어나면서 페리터미널을 이용하는 이용객이 증가하고 있다. 그러나 차량과 여객을 함께 탑승하는 페리(차도선)가 접안하는 페리터미널이 이용객 관점에서 이용에 편리한지에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 많은 섬을 연결하는 도서항로가 위치하고 있는 목포지역을 대상으로 심층 설문조사(Audit survey)를 실시하여 페리터미널 이용객의 보행 편리성에 대하여 연구하였다.

  • PDF

Development of Measurement System of Moving Distance Using a Low-Cost Accelerometer

  • Cho, Seong-Yun;Kim, Jin-Ho;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.4-130
    • /
    • 2001
  • In this paper, a measurement system of moving distance is developed. The error compensation method is also proposed using the characteristics of walking motion. As personal navigation systems and multimedia systems are emerging into the commericial market, men´s moving distance is considered as one of the important information. GPS offers the information easily but GPS can be used only when the satellites are visible. INS can calculate the moving distance anywhere but error is increased with time due to the sensor bias. In this paper, to detect the human walking distance a measurement system of moving distance only using low-cost accelerometer is developed. The sensor bias is estimated and compensated using the walking motion characteristics. The performanced of the proposed system is verified by experiment.

  • PDF

Development of a Personal Navigation System Including Activity Monitoring Function (운동량 감시 기능을 포함한 개인항법시스템 개발)

  • Kang, Dong-Youn;Yun, Hee-Hak;Cha, Eun-Jong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.286-293
    • /
    • 2008
  • The design and implementation of a personal navigation system including activity monitoring function is given in this paper. The system consists of a 3 dimensional MEMS accelerometer, digital compasses and ZigBee communication. An accelerometer and digital compasses are used to compute the position and activity. The obtained position and activity information is transmitted to a fixed beacon via ZigBee. At the same time, activity information is stored in the personal navigation system to a batch analysis program. The step detection algorithm which is robust to attaching location is proposed. Also two digital compass error compensation algorithms are proposed to find more precise headings. The experiments with a real system show that the activities of users and continuous locations less than 1.5m errors are obtained after 80m walking.

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

A Study of Pedestrian Navigation Service System for Visual Disabilities (시각장애인용 길안내 서비스 시스템에 대한 연구)

  • Jang, Young Gun;Cha, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2017
  • This paper is a study on the design and realization of Pedestrian navigation service system for the visually impaired. As it is an user interface considering visually impaired, voice recognition functioned smartphone was used as the input tool and the Osteoacusis headset, which can vocally guide directions while recognizing the surrounding environment sound, was used as the output tool. Unlike the pre-existing pedestrian navigation smartphone apps, the developed system guides walking direction by the scale of the left and right stereo sound of the headset wearing, and the voice guidance about the forked or curved path is given several meters before according to the speed of the user, and the user is immediately warned of walking opposite direction or proceeding off the path. The system can acquire stable and reliable directional information using the motion tracker with the dynamic heading accuracy of 1.5 degrees. In order to overcome GPS position error, we proposed a robust trajectory planning algorithm for position error. Experimental results for the developed system show that the average directional angle error is 6.82 degrees (standard deviation: 5.98) in the experimental path, which can be stated that it stably navigated the user relatively.

Personal Navigation System Using GPS and Dead Reckoning (GPS와 추축항법을 이용항 개인휴대 항법시스템)

  • Hong, Jin-Seok;Yoon, Seon-Il;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.454-464
    • /
    • 2001
  • In this paper, a personal navigation system is developed using GPS and dead reckoning sensors. This personal navigation system can be used to track a person inside a building, on an urban street, and in the mountain area. GPS can provide accurate absolute position information, but it cant be used without receiving enough satellite signals. Although the inertial sensors such as gyro an accelerometer and be used without this diggiculty, the inertial sensors severely suffer from their drift errors and the magne-tometer can be easily distorted by surrounding electromagnetic field. GPS and DR sensors can be inte-grated together to overcome these problems. A new personal navigation system that can be carried wit person is developed. A pedometer. actually vertically mounted accelerometer, detects ones footstep and gyro detects heading angle. These DR sensors are integrated with GPS and the humans walking pattern provides additional navigation information for compensating the DR sensors. The field testes are performed to evaluated the proposed navigation algorithm.

  • PDF

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

Indoor Position Detection Algorithm Based on Multiple Magnetic Field Map Matching and Importance Weighting Method (다중 자기센서를 이용한 실내 자기 지도 기반 보행자 위치 검출 정확도 향상 알고리즘)

  • Kim, Yong Hun;Kim, Eung Ju;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.471-479
    • /
    • 2019
  • This research proposes a indoor magnetic map matching algorithm that improves the position accuracy by employing multiple magnetic sensors and probabilistic candidate weighting function. Since the magnetic field is easily distorted by the surrounding environment, the distorted magnetic field can be used for position mapping, and multiple sensor configuration is useful to improve mapping accuracy. Nevertheless, the position error is likely to increase because the external magnetic disturbances have repeated pattern in indoor environment and several points have similar magnetic field distortion characteristics. Those errors cause large position error, which reduces the accuracy of the position detection. In order to solve this problem, we propose a method to reduce the error using multiple sensors and likelihood boundaries that uses human walking characteristics. Also, to reduce the maximum position error, we propose an algorithm that weights according to their importance. We performed indoor walking tests to evaluate the performance of the algorithm and analyzed the position detection error rate and maximum distance error. From the results we can confirm that the accuracy of position detection is greatly improved.