• Title/Summary/Keyword: Walking activity

Search Result 508, Processing Time 0.019 seconds

Effects of Changes in the Indoor and Outdoor Environmental on the Walking Speed and Lower Extremity Muscle Activities in People Aged Forty and Older than Seventy Years (실내·외 보행환경의 변화가 40대와 노인의 보행속도와 다리 근활성도에 미치는 영향)

  • Lee, Jun-Young;Kim, Tack-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • PURPOSE: This study compared the effects of indoor and outdoor environmental changes on the activity of the major lower limb muscles and walking factors in people 40-50 years and those aged older than 70 years. METHODS: Ten middle-aged people in their forties (age:$44.2{\pm}2.7$, BMI:$21.8{\pm}1.8$) and 10 elderly aged more than 70 years (age:$76.4{\pm}5.9$, BMI:$22.2{\pm}1.9$) with a normal walking ability were included. The participants walked 100 m both indoors and outdoors at their own speed. Using a 3D motion analyzer and EMG, the walking speed, angle of the ankle and activity changes of the lower limb muscles were compared. RESULTS: Significant differences in walking speed and peak-plantar flexion angle were observed between the two groups (p<.05). The muscular activity of the gastrocnemius muscle (GCM) was significantly different outdoors in the swing phase between the two groups (p<.05). In the people aged in their forties, the muscular activity of the rectus femoris (RF) was significantly higher outdoors than indoors (p<.05). In the elderly, however, the muscular activity of the RF was lower outdoors than indoors (p<.05). When compared to those in there forties, the muscular activity of the outdoor RF significantly decreased in the elderly group (P<.05). The muscular activity of the biceps femoris (BF) in the elderly decreased significantly outdoors compared to indoors (p<.05). CONCLUSION: For the elderly, increasing the exposure to the new environments or focusing on the performance of repeated movements for gradual speed control and precise movements is required to maintain normal gaits and movements that are less affected by environmental changes.

Comparison of Core Muscle Activity and Thickness According to Walking Training Method (워킹 훈련방법에 따른 복부 중심근육 활성도와 근 두께 변화 비교)

  • Lee, H.J.;Kim, Y.T.;Lee, S.J.;Kim, M.S.;Kim, S.H.;Tae, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2015
  • The purpose of this study was to compare core muscle activity and thickness in the abdomen (internal Oblique, IO; External Oblique, EO; Transverse Abdominis, TrA) according to walking training methods. Tests were performed on 20 healthy men who randomly assigned to two groups, divided by Nordic walking (n=10) or Power walking group (n=10). They were performed Nordic walking or Power walking training for 2 weeks that is consistent with each of the assigned groups. Results demonstrated that Nordic walking was more effective than Power walking in improving IO and EO activities. Nordic walking is believed to be useful method for a variety of therapeutic exercise as a stable balance with the stick in addition to normal gait and trunk stability.

  • PDF

The Effect of Gaze Angle on Muscle Activity and Kinematic Variables during Treadmill Walking

  • Kim, Bo-Suk;Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • Objective: The purpose of this study was to determine how gaze angle affects muscle activity and kinematic variables during treadmill walking and to offer scientific information for effective and safe treadmill training environment. Method: Ten male subjects who have no musculoskeletal disorder were recruited. Eight pairs of surface electrodes were attached to the right side of the body to monitor the upper trapezius (UT), rectus abdominis (RA), erector spinae (ES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), medialis gastrocnemius (MG), and lateral gastrocnemius (LG). Two digital camcorders were used to obtain 3-D kinematics of the lower extremity. Each subject walked on a treadmill with a TV monitor at three different heights (eye level; EL, 20% above eye level; AE, 20% below eye level; BE) at speed of 5.0 km/h. For each trial being analyzed, five critical instants and four phases were identified from the video recording. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: This study found that average and peak IEMG values for EL were generally smaller than the corresponding values for AE and BE but the differences were not statically significant. There were also no significant changes in kinematic variables among three different gaze angles. Conclusion: Based on the results of this study, gaze angle does not affect muscle activity and kinematic variables during treadmill walking. However, it is interesting to note that walking with BE may increase the muscle activity of the trapezius and the lower extremity. Moreover, it may hinder proper dorsiflexion during landing phase. Thus, it seems to reasonable to suggest that inappropriate gaze angle should be avoided in treadmill walking. It is obvious that increased walking speed may cause a significant changes in biomechanical parameters used in this study. It is recommended that future studies be conducted which are similar to the present investigation but using different walking speed.

A Study of Walking Activity Time Characteristics Based on the Time Use Survey (생활시간조사에 기반한 보행활동시간 특성 분석)

  • Park, Jihun;Ku, Donggyun;Jeong, Ilho;Lee, Seungjae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.53-61
    • /
    • 2022
  • Despite the increasing importance of pedestrians and their walking individualities, walking activity time characteristics are yet to be studied. This study analyzes the walking activity time characteristics by group using the Time Use Survey data. In order to analyze the characteristics of each pedestrian group, cluster analysis and correspondence analysis were performed by dividing the walking styles into utilitarian and leisure-purpose walking. Those who did not undertake utilitarian walking were mainly the worker group, whereas subjects who walked could be classified into homemaker and student groups. The peak of the student group appeared clearly in the morning, with a dispersed peak obtained during the afternoon. Although the peak of the homemaker group was not precise, it was confirmed that they mainly walked in the afternoon. The worker group also did not participate in leisure-purpose walking, while the elderly group mostly undertook walking for leisure. These walking activity time characteristics of pedestrians are expected to be applied when establishing related pedestrian policies.

Effects of Shoe Heel Height on Walking Velocity and Electromyographic Activities of Lower Extremity Muscles During Short- and Long-Distance Walking in Young Females (젊은 여성에서 단거리 및 장거리 보행 시 신발 뒤굽 높이가 보행 속도와 다리 근육의 근활성도에 미치는 영향)

  • Oh, Duck-won
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.16-23
    • /
    • 2019
  • Background: High-heeled shoes can change spinal alignment and feet movement, which leads to muscle fatigue and discomfort in lumbopelvic region, legs, and feet while walking. Objects: This study aimed to identify the effects of different shoe heel heights on the walking velocity and electromyographic (EMG) activities of the lower leg muscles during short- and long-distance walking in young females. Methods: Fifteen young females were recruited in this study. The experiments were performed with the following two different shoe heel heights: 0 cm and 7 cm. All participants underwent an electromyographic procedure to measure the activities and fatigue levels of the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and hamstring muscles with each heel height during both short- and long-distance walking. The walking velocities were measured using the short-distance (10-m walk) and long-distance (6-min walk) walking tests. Results: Significant interaction effects were found between heel height and walking distance conditions for the EMG activities and fatigue levels of TA and MG muscles, and walking velocity (p<.05). The walking velocity and activities of the TA, MG, and RF muscles appeared to be significantly different between the 0 cm and 7 cm heel heights during both short- and long-distance walking (p<.05). Significant difference in the fatigue level of the MG muscle were found between the 0 cm and 7 cm heel heights during long-distance walking. In addition, walking velocity and the fatigue level of the MG muscle at the 7 cm heel height revealed significant differences in the comparison of short- and long-distance walking (p<.05). Conclusion: These findings indicate that higher shoe heel height leads to a decrease in the walking velocity and an increase in the activity and fatigue level of the lower leg muscles, particularly during long-distance walking.

Effect of Short-distance Walking Activity on Milk Production and Metabolic Status of Lactating Dairy Cows

  • Lim, Dong-Hyun;Kim, Tae-Il;Kim, Hyun-Jong;Kim, Sang-Beom;Park, Seong-Min;Park, Ji-Hoo;Ha, Seong-Min;Lee, Ji-Hwan;Lim, Hyun-Joo;Jeong, Ha-Yeon;Mayakrishnan, Vijayakumar
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 2018
  • In this study, the effect of daily short-distance walking exercise on milk production and metabolic status of the lactating dairy cows was investigated. The experiment was conducted with 10 lactating dairy cows comprising 2 groups (5 dairy cows/group), which were walking activity and non-walking activity. The walking activity (WA) group lactating dairy cows walked outdoors for 1 km/d, and the non-walking activity (non-WA) lactating dairy cows were maintained within a cowshed from $18^{th}$ April to $30^{th}$ May. The activity volume of the neck was not significantly different between the groups, but the activity volume of the leg was higher in WA group compared with non-WA (p<0.05). The rectal temperature was higher in the WA group ($38.6^{\circ}C$) compared with non-WA ($38.2^{\circ}C$) (p<0.05). No significant differences in dietary NE intake, milk production and milk composition were found between the groups. The plasma cortisol concentration was higher in WA group ($2.14{\mu}g/dl$) compared to non-WA ($0.95{\mu}g/dl$) (p<0.05). However, plasma cortisol level of WA dairy cows was significantly decreased as compared with non-WA cows. On the contrary, the level of plasma melatonin was increased in WA cows than that of non-WA dairy cows. It may be interpreted as a change in physical fitness. From this study, we suggest that walking activity can be improved energy balance. Further investigation is needed to determine whether different combinations of distance, rate or doing in morning or afternoon will stimulate energy balance.

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.

Effects of Physical Activity in the Elderly with Osteoarthritis on Stress and Health-related Quality of Life (EQ-5D) : Using Data from the 2018 National Health and Nutrition Survey (골관절염 노인의 신체활동이 스트레스 및 건강관련 삶의 질(EQ-5D)에 미치는 영향 : 2018 국민건강영양조사 자료 이용)

  • Paek, Hyun-Hee;Jeong, Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.5
    • /
    • pp.267-276
    • /
    • 2020
  • The purpose of this study was to investigate the effects of physical activity in the elderly with osteoarthritis on stress and health-related quality of life (EQ-5D). This study performed data analysis using the SPSS 17.0 program in 104 elderly people with osteoarthritis over 65 years old using raw data from the 7th National Health and Nutrition Survey. The main results of this study are as follows: Males exercised more strength than women, and the better the subjective health status, the higher the rate of walking and aerobic activity. The group that felt stress showed a higher rate of walking and aerobic activity than the group that had no stress, and one group that felt a little stress practiced walking more than 3 days. The exercise ability of the elderly with osteoarthritis was better in the group who practiced walking, strength training, and aerobic activity than in the group without physical activity, and in self-management, the group practicing exercise and aerobic activity had problems with self-management. There was no daily activity, and the group that practiced walking and strength training also showed a high level of daily activity. In the area of pain/discomfort, the group practicing walking showed less pain/discomfort, and in the area of anxiety/depression, the group practicing walking showed less anxiety/depression. In conclusion, it is considered that in order to increase the quality of life of the elderly with osteoarthritis and to manage the stress, active efforts to increase the level of physical activity are necessary.

The Study of Muscle Activity Change with Lower Extremity during Stair and Ramp Walking in Young Adults (젊은 성인의 계단과 경사로 오르기 동안 하지의 근활성도 변화 연구)

  • Han, Jin-Tae;Nam, Tae-Ho;Shin, Hyung-Soo;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate characteristics of the muscle activities during level walking and stairs ascending in young adults. Methods : Fifteen young adult were recruited this study. Muscle activity (BIOPAC System Inc., Santa Barbara, U.SA). Statistical analysis was difference between level and stair walking. Results : In stance phase, muscle activity of low extremity generally more increased during ramp ascent both young adults. In swing phase, muscle activity of low extremity generally more increased during stairs ascent in young adults. Conclusion : These results indicate that stair and ramp ascent is more difficult task than level walking in young adults. Muscle activity was more changed at ramp ascent. In the future, we suggest that studies of stair and ramp gait pattern regarding ambulatory patient with disabilities be further studied and an appropriate stairs and ramp inclination will be indicated.

  • PDF

Development of a Modular-type Knee-assistive Wearable System (무릎근력 지원용 모듈식 웨어러블 시스템 개발)

  • Yu, Seung-Nam;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2010
  • This study proposes a lower-limb exoskeleton system that is controlled by a wearer's muscle activity. This system is designed by following procedure. First, analyze the muscle activation patterns of human leg while walking. Second, select the adequate actuator to support the human walking based on calculation of required force of knee joint for step walking. Third, unit type knee and ankle orthotics are integrated with selected actuator. Finally, using this knee-assistive system (KAS) and developed muscle stiffness sensors (MSS), the muscle activity pattern of the subject is analyzed while he is walking on the stair. This study proposes an operating algorithm of KAS based on command signal of MSS which is generated by motion intent of human. A healthy and normal subject walked while wearing the developed powered-knee exoskeleton on his/her knees, and measured effectively assisted plantar flexor strength of the subject's knees and those neighboring muscles. Finally, capabilities and feasibility of the KAS are evaluated by testing the adapted motor pattern and the EMG signal variance while walking with exoskeleton. These results shows that developed exoskeleton which controlled by muscle activity could help human's walking acceptably.