• Title/Summary/Keyword: Walking Robot

Search Result 617, Processing Time 0.035 seconds

Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory (목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성)

  • Choi, Nak-Yoon;Choi, Young-Lim;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO (PSO를 이용한 테오얀센 기반의 보행로봇 다리설계)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.660-666
    • /
    • 2011
  • In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

Estimation of Attitude Control for Quadruped Walking Robot Using Load Cell (로드셀을 이용한 4족 보행로봇의 자세제어 평가)

  • Eom, Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1235-1241
    • /
    • 2012
  • In this paper, each driving motor for leg joints on a robot is controlled by estimating the direction of the legs measuring each joint angle and attitude angle of robot. We used quadruped working robot named TITAN-VIII in order to carry out this experimental study. 4 load cells are installed under the bottom of 4 legs to measure the pressed force on each leg while it's walking. The walking experiments of the robot were performed in 8 different conditions combined with duty factor, the length of a stride, the trajectory height of the foot and walking period of robot. The validity of attitude control for quadruped walking robot is evaluated by comparing the pressed force on a leg and the power consumption of joint driving motor. As a result, it was confirmed that the slip-condition of which the foot leave the ground late at the beginning of new period of the robot during walking process, which means the attitude control of the robot during walking process wasn't perfect only by measuring joint and attitude angle for estimating the direction of the foot.

Neural Network Control of Humanoid Robot (휴머노이드 로봇의 뉴럴네트워크 제어)

  • Kim, Dong-W.;Kim, Nak-Hyun;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.963-968
    • /
    • 2010
  • This paper handles ZMP based control that is inspired by neural networks for humanoid robot walking on varying sloped surfaces. Humanoid robots are currently one of the most exciting research topics in the field of robotics, and maintaining stability while they are standing, walking or moving is a key concern. To ensure a steady and smooth walking gait of such robots, a feedforward type of neural network architecture, trained by the back propagation algorithm is employed. The inputs and outputs of the neural network architecture are the ZMPx and ZMPy errors of the robot, and the x, y positions of the robot, respectively. The neural network developed allows the controller to generate the desired balance of the robot positions, resulting in a steady gait for the robot as it moves around on a flat floor, and when it is descending slope. In this paper, experiments of humanoid robot walking are carried out, in which the actual position data from a prototype robot are measured in real time situations, and fed into a neural network inspired controller designed for stable bipedal walking.

Development of Walking Guide Robot for the Blind (시각장애인을 위한 보행안내로봇 개발)

  • Yu K.H.;Yoon M.J.;Kwon T.K.;Kim N.G.;Kang J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

Optimal Manipulation for a Hexapod Walking Robot (6족 보행 로봇에서의 최적 머니퓰레이션)

  • Seo, Hyeon-Se;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.168-174
    • /
    • 2015
  • The ultimate purpose of a walking robot is to move to a designated spot and to perform a necessary manipulation. To perform various manipulations for a walking robot, it should have some kind of an extra manipulator. However, if the manipulation task for the robot is simple enough, the robot can perform the task by using its legs. Among various kinds of walking robots, a hexapod walking robot has relatively many legs, so it has the advantage of stability and walking speed. So, a hexapod walking robot can perform simple manipulation task by using its one or two legs while maintaining stability by using the rest of legs. In this paper, we deal with a simple manipulation task of holding a ball. We formulate the task as a redundancy resolution problem and propose a method for obtaining an optimal solution.

Development of Android Application for Wireless Control of Omnidirectional Biped Walking of Humanoid Robot (휴머노이드 로봇의 전방향 이족보행 원격제어를 위한 안드로이드 애플리케이션 개발)

  • Park, GyuYung;Yun, JaeHun;Choi, YoungLim;Kim, Jong-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.223-231
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human interaction and various intelligent services. The present work addresses development of real time wireless control application of humanoid robot's forward and backward walks, and turning in walking. For convenience of human users, the application is developed on Android OS (Operating System) working on his or her smartphone. To this end, theoretic background on various-directional biped walking is proposed based on joint trajectories for forward walking, which have been shaped with a global optimization method. In this paper, backward walking is scheduled by interchange of angles and angular velocities and additional change of signs in angular velocities at all the via-points connecting cubic polynomial trajectories. Turning direction in walking is also implemented by activating the transversal hip joint initially located in the support leg in two stages. After validation of the proposed walking schemes with Matlab simulator, a smartphone application for the omnidirectional walking has been developed to control a humanoid robot platform named DARwIn-OP interconnected via Wi-Fi. Experiment result of the present wireless control of a humanoid robot with smartphone is successful, and the application will be released in application market near future.

Proposal of Moving Mechanism of Window Cleaning Robot (유리창 청소 로봇의 이동 메커니즘 제안)

  • Lee, Dong-Hyuk;Moon, Hyung-Pil;Roh, Se-Gon;Hwang, Dal-Yeon;Yu, Won-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Recently researches on the window cleaning robot are being conducted actively. Moving mechanismsof these window cleaning robots are divided into two categories, which are towed type and walking type. Towed type is focused on fast cleaning on the flat surface of building and walking type has priority on cleaning task on relatively complex surface with overcoming obstacles. Currently commercialized towed type window cleaning robot has weakness that it is hard to adhere closely with the wall and easy to be affected by wind. In case of walking type it has the problem that the position errors are continuously accumulated during motion. In this paper, we propose new towed and walking type mechanism which can compensate previous weaknesses. After that we estimate the performance of each proposed mechanism by simulation.

Study on the Real-Time Walking Control of a Humanoid Robot U sing Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Lee, Bo-Hee;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.551-558
    • /
    • 2008
  • This paper deals with the real-time stable walking for a humanoid robot, ISHURO-II, on uneven terrain. A humanoid robot necessitates achieving posture stabilization since it has basic problems such as structural instability. In this paper, a stabilization algorithm is proposed using the ground reaction forces, which are measured using FSR (Force Sensing Resistor) sensors during walking, and the ground conditions are estimated from these data. From this information the robot selects the proper motion pattern and overcomes ground irregularities effectively. In order to generate the proper reaction under the various ground situations, a fuzzy algorithm is applied in finding the proper angle of the joint. The performance of the proposed algorithm is verified by simulation and walking experiments on a 24-DOFs humanoid robot, ISHURO-II.

Development of Quadrupedal Robot Mimicking the Motion of Snake (뱀의 구동원리를 이용한 4족보행 로봇의 개발)

  • Kim, Seonghyeon;Kim, Yeseung;Kim, Minsong;Song, Jinhyeok;Yun, Dongwon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2019
  • Snake robots are slower than wheeled robots or legged robots, while they have an excellent terrainability in a disastrous area. Considering their advantages and disadvantages, a legged robot whose legs are snake robots, 'Quadnake' was proposed in this research. Five motions of the snake were analyzed. Applying these motions, Quadnake could implement eight kinds of motions which snake robots and quadruped walking robots can implement. As a result of it, Quadnake can have the advantages of both a snake robot and a walking robot. It is expected to move stably in a harsh terrain with snake's motion and move fast with walking.