• Title/Summary/Keyword: Walking Pattern

Search Result 341, Processing Time 0.033 seconds

Analysis of Walking Characteristics according to the Disposition of the Acceleration Measuring Unit for the PNS (개인 항법시스템을 위한 가속도 측정장치의 배치에 따른 보행 특성 분석)

  • Lee, Jun-Ho;Cho, Sung-Yoon;Jin, Yong;Park, Chan-Guk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.439-439
    • /
    • 2000
  • In this paper, the relationship among the vertical acceleration, measuring points and walking patterns is analyzed. To measure acceleration, the acceleration measurement unit and communication board is constructed. It uses MEMS accelerometer ADXL-202 that detects 2-axis acceleration simultaneously. It is shown by the experiment test that the walking pattern is recognized and walking step is detected at easy when acceleration measurement unit is mounted on leg.. This results can be directly utilized in designing the personal navigation system with low-cost inertial sensor.

  • PDF

Study on the Real-Time Walking Control of a Humanoid Robot U sing Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Lee, Bo-Hee;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.551-558
    • /
    • 2008
  • This paper deals with the real-time stable walking for a humanoid robot, ISHURO-II, on uneven terrain. A humanoid robot necessitates achieving posture stabilization since it has basic problems such as structural instability. In this paper, a stabilization algorithm is proposed using the ground reaction forces, which are measured using FSR (Force Sensing Resistor) sensors during walking, and the ground conditions are estimated from these data. From this information the robot selects the proper motion pattern and overcomes ground irregularities effectively. In order to generate the proper reaction under the various ground situations, a fuzzy algorithm is applied in finding the proper angle of the joint. The performance of the proposed algorithm is verified by simulation and walking experiments on a 24-DOFs humanoid robot, ISHURO-II.

A Study on Stairs Walking of a Biped Robot (이족 로봇의 계단 보행에 관한 연구)

  • Oh, Jae-Joon;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1764-1766
    • /
    • 2007
  • This paper aims to generate the static walking pattern of a biped robot on stairs and to show the effectiveness of the proposed algorithm using its ankle and pelvis. Differently from the previous biped robots, our biped robot has the peculiar mechanism on its ankle and pelvis. By using this mechanism, we can reduce the load in the knee when a biped robot ascends the stairs. This means that a biped robot can climb up a higher step. The stairs walking trajectory that is separated into a ankle trajectory and a pelvis trajectory is generated by cubic spline interpolation. Finally, we confirm the feasibility of the proposed algorithm through the computer simulation and the real walking experiment.

  • PDF

Implementation of Occupant Density and Walking Pattern Measurement for Emergency Evacuation and Safety in High-Rise Multi-Purpose Facilities

  • Lee, Myung Sik
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.409-415
    • /
    • 2018
  • Recently, many countries around the world began to show interest in safety against terrorism, fire, and natural disasters. This study aimed to propose a quantitative measurement system for emergency evacuation and safety for various kinds of terrorism and fire within high-rise multi-purpose facilities, which can measure the pedestrians' ordinary walking patterns in the concourse with the highest pedestrian volume out of all the spaces within multi-story buildings, predict pedestrians' evacuation walking lines when a sudden disaster breaks out, and analyze the gait coefficient, occupant density, and evacuation behavior time.

The Effects Where the Stroke Shoes Which Use Functional Electric Stimulation Goes Mad to Walking of the Hemiplegia (기능적 전기자극 치료기를 이용한 중풍구두가 편마비 환자의 보행에 미치는 영향)

  • Kim, Jeong-Seon;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: An objective analysis and observations were to be done on hemiplegia patients that are wearing a walking support device, Stroke shoes. Their improvements in walking pace, the reduction of distance between the two knee joint, the increase of curve angle of the knee joint and their steps and the reduction of ankle joint upon swing phase were analyzed using a 20 walking analyzer. Methods: An examination was carried out to see the patients' communication skill and independent walking and then let them walk with the Stroke shoes on to get results before and after wearing it. Simi Reality Motion Systems GmbH (Germany, 2007) was used to analyze the results regarding knee joint and ankle joint angle changes of sagitta plane and coronal plane, stepping distances, distances between the knees and walking pace. Results: 1. The articulation angle of ankle joint during swing phase decreased and knee joint has shown a statistically significant increase in such value(p<0.05). 2. Only knee joint showed a significant increase in articulation angle during heel strike(p<0.05). 3. Knee joint showed a significant increase in articulation angle during toe off(p<0.05). 4. The distance between the two knees as well as their foot steps significantly decreased compared with when Stroke shoes were not worn(p<0.05). 5. Stroke shoes with FES have shown positive effects on the patients in improving their walking styles overall. (p<0.05). Conclusion: There was an improvement in rotation walking pattern by a reduction in the distance between the knees after wearing Stroke shoes with FES. Plantar flexion reduced that occurred in ankle joint during walking and flexion angle increased in knee joint, both of which improved foot drop which was a major problem in hemiplegia patients. Also it is believed that the device will have some positive influences on knee joint stiffening paralysis to aid in improving inefficient walking phases.

  • PDF

The Biomechanical Evaluation of New Walking-shoes (신 워킹 전문화의 생체역학적 기능성 평가)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.193-205
    • /
    • 2006
  • This study was to analysis the kinematic and kinetic differences between new walking shoe(NWS : RYN) and general walking shoe(GWS). The subjects for this study were 10 male adults who had the walking pattern of rearfoot shrike with normal foot. The movement of one lower leg was measured using plantar pressure and Vicon Motion Analysis Program(6 MX13 and 2 MX40 cameras : 100 f / s) while the subjects walked at the velocity(1.5m/s. on 2m).. The results of this study was as follows : 1. The NWS was better than the GWS that caused injuries such as adduction, abduction and pronation are reduced While walking on a perpendicular surface, the landing angle and the knees angles were extensive which makes walking more safe which reduces anxiety and uneasiness. 2. The bottom of the NWS were now made into a more circular arch which supports the weight of the body and reduces the irregular angles when wearing GWS. This arch made the supporting area more wide which made the upholding the trunk of the body more effective. The whole bottom of the foot that supports the weight is more flexible in addition, increases the safeness of walking patterns and the momentum of the body. 3. The moment the heel of the foot of the NWS touch the ground, the range of the pressure were partially notable and the range of the pressure on the upper part of the thigh were dispersed The injuries that occurred while walking. primary factors when a shock related injuries are reduced Judgements of the impacts of the knees and the spinal column dispersing could be made.

Development of the Medical Support Service Robot Using Ergonomic Design

  • Cho, Young-Chul;Jang, Jae-Ho;Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2660-2664
    • /
    • 2003
  • In this study, the concept of autonomous mobility is applied to a medical service robot. The aim of the development of the service robot is for the elderly assisting walking rehabilitation. This study aims that the service robot design parameter is proposed in ergonomic view. The walking assistant path pattern is derived from analyzing the elderly gait analysis. A lever is installed in the AMR in order to measure the pulling force and the leading force of the elderly. A lever mechanism is applied for walking assistant service of the AMR. This lever is designed for measuring the leading force of the elderly. The elderly adjusts the velocity of the robot by applying force to the lever. The action scope and the service mechanism of the robot are developed for considering and analyzing the elderly action patterns. The ergonomic design parameters, that is, dimensions, action scope and working space are determined based on the elderly moving scope. The gait information is acquired by measuring the guide lever force by load cells and working pattern by the electromyography signal.

  • PDF

Control Algorithm of a Wearable Walking Robot for a Patient with Hemiplegia (편마비 환자를 위한 착용형 보행 로봇 제어 알고리즘 개발)

  • Cho, Changhyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2020
  • This paper presents a control algorithm for a wearable walking aid robot for subjects with paraplegia after stroke. After a stroke, a slow, asymmetrical and unstable gait pattern is observed in a number of patients. In many cases, one leg can move in a relatively normal pattern, while the other leg is dysfunctional due to paralysis. We have adopted the so-called assist-as-needed control that encourages the patient to walk as much as possible while the robot assists as necessary to create the gait motion of the paralyzed leg. A virtual wall was implemented for the assist-as-needed control. A position based admittance controller was applied in the swing phase to follow human intentions for both the normal and paralyzed legs. A position controller was applied in the stance phase for both legs. A power controller was applied to obtain stable performance in that the output power of the system was delimited during the sample interval. In order to verify the proposed control algorithm, we performed a simulation with 1-DOF leg models. The preliminary results have shown that the control algorithm can follow human intentions during the swing phase by providing as much assistance as needed. In addition, the virtual wall effectively guided the paralyzed leg with stable force display.

Juvenile, Adolescent Idiopathic Scoliosis Treated with Chuna Manipulation and Foot Orthosis Treatment : Four Clinical Cases Report (추나 치료와 족부 보조기를 병행한 연소기, 청소년기 특발성 척추측만증 치험 4례)

  • Park, Jung-Woo;Kim, Soon-Joong;Jeong, Su-Hyeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • The objective of this study is to report the effect of Chuna manipulation and foot orthosis treatment on juvenile, adolescent idiopathic scoliosis by observing four clinical case studies. Pre-and post-treatment, we investigated the changes in Cobb's angle, pelvic height and walking pattern by using the standing full spine X-ray. After application of a Chuna manipulation and foot orthosis treatment, Cobb's angle was reduced in 4 cases. Difference of pelvic height was reduced in 3 cases, and other 1 case was increased rather. And walking balance was improved in the case of measuring walking balance pattern. This study showed that Chuna manipulation and foot orthosis treatment has meaningful effect on juvenile, adolescent idiopathic scoliosis and more researches should be followed.