• Title/Summary/Keyword: Walking Orthosis

Search Result 48, Processing Time 0.025 seconds

The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities (족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동)

  • Song Sam-Hong;Oh Dong-Joon;Jung Hoon-Hee;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

Change of gait pattern by ankle foot orthosis in stroke patients with foot drop (뇌졸중 환자의 단하지 보조기 착용 유무에 따른 보행 양상의 변화)

  • Oh, Jaegun;Park, Kee-eon;Jung, Byongjun;Lee, Ilsuk;Choi, Sanho;Lee, Sangkwan;Sung, Kang-keyng
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.40-48
    • /
    • 2013
  • ■ Objectives This study was designed to investigate the effects of an ankle foot orthosis(AFO) on gait of two hemiparetic stroke patients with foot drop. ■ Methods Gait of two hemiparetic stroke patients were analyzed during walking on the treadmill without or with AFO application. The spatiotemporal and center of pressure(CoP) intersection parameters of gait analysis were measured using a treadmill gait analysis system. ■ Results The AFO had positive effects on hemiparetic gait parameters; increasing cadence, increasing step length, decreasing step time, stride time, and lateral symmetry. ■ Conclusion Hemiparetic gait was improved by ankle foot orthosis.

  • PDF

Case Study of 4-Bar Linkage KAFO in Person With Poliomyelitis (소아마비에서 4절 연쇄 장하지보조기 사례연구)

  • Kim, Jang-Hwan;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Cynn, Heon-Seock;Choi, Heung-Sik
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.

Development of Walking Assistant Controller for Patients with Weakness in Cardiopulmonary System (심폐기능 허약자를 위한 보행보조장치 제어기 개발)

  • Kang, S.J.;Kim, G.S.;P, S.H.;Mun, M.S.;Sei, S.W.;Kim, J.K.;Ryu, J.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Case of patients with weakness in cardiopulmonary system, other ambulatory function is normal, but oxygen supply function is problem. So they need reduce energy consumption for gait by assistance system. In this study, we designed and developed walking assistant device which helps flexion and extension of hip joint for cardiopulmonary patients. There are two motors, each at the left and right side of pelvis, providing torque to the hip joint. The target angle of the flexion and extension in the hip joint is set according to the normal gait. As a result, reduction of energy consumption was 14.8% by gait assistive device.

The Effect of Protective Socks with Functional Insoles on Plantar Foot Pressure in Diabetes Patients

  • Kim, Hyun Soo;Jung, Do Young
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.6
    • /
    • pp.224-228
    • /
    • 2018
  • Purpose: The most common cause of plantar ulceration is an excessive plantar pressure in patients with peripheral neuropathy. Foot orthosis and therapeutic footwear have been used to decrease the plantar pressure and prevent the plantar ulceration in in diabetes patients. We investigated whether protective sock with functional insoles reduce plantar pressure while walking in 17 diabetes patients. Methods: An in-shoe measurement device was used to measure the peak plantar pressure while walking. Peak plantar pressure data were collected while walking under two conditions: 1) wearing diabetic sock and 2) wearing the protective sock with functional insoles. Each subject walked 3 times in 10-m corridor under three conditions, and data were collected in 3 steps in the middle of corridor with in right and left feet, respectively. Pared t-test was used to compare the peak plantar pressures in three plantar areas under these two conditions. Results: The protective sock with functional insoles significantly reduced the peak plantar pressure on the lateral rearfoot, but significantly increased the peak plantar pressure on the middle forefoot, and medial midfoot (p<0.05). However, there were not significant in medial and lateral forefoot, lateral midfoot, and medial rearfoot between diabetic sock and the protective sock conditions (p>0.05). Conclusion: The protective sock with functional insoles reduced plantar pressures in the rearfoot and supported the medial longitudinal arch. However, it is necessary to change the position of metatarsal pad in the insole design of forefoot area to prevent diabetic foot ulceration.

Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis Patients (마비 환자의 정상적 보행을 위한 능동형 단하지 보조기 개발)

  • Hwang, Sung-Jae;Kim, Jung-Yoon;Hwang, Seon-Hong;Park, Sun-Woo;Yi, Jin-Bock;Kim, Young-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2007
  • In this study, we developed an active ankle-foot orthosis(AAFO) which can control dorsi/ plantar flexion of the ankle joint to prevent foot drop and toe drag during walking. 3D gait analyses were performed on five healthy subjects under three different gait conditions: the normal gait without AFO, the SAFO gait with the conventional plastic AFO, and the AAFO gait with the developed AFO. As a result, the developed AAFO preeminently induced the normal gait compared to the SAFO. Additionally, AAFO prevented foot drop by proper plantarflexion during loading response and provided enough plantarflexion moment as a driving force to walk forward by sufficient push-off during pre-swing. AAFO also could prevent toe drag by proper dorsiflexion during swing phase. These results indicate that the developed AAFO may have more clinical benefits to treat foot drop and toe drag, compared to conventional AFOs, and also may be useful in patients with other orthotic devices.

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

The Stress Distribution Property on the Customized Ankle Foot Orthoses During the Gait Period (보행주기에 따른 맞춤형 단하지보조기의 응력분포 특성)

  • Choi, Young-Chul;Rhee, Kun-Min;Choi, Hwa-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.165-175
    • /
    • 2008
  • An ankle-foot orthosis(AFO) is a brace for persons with gait disabilities to support or replace the function of ankle joint. Ankle-foot orthoses(AFO's) are usually prescribed to alleviate the drop-foot by constraining the excessive plantar flexion. The shape and the strength of the AFO are often based on 'trial and error' due to a lack of knowledge of the stress distribution in the AFO. In this study, an improved stress-freezing method was proposed to measure the stress distribution characteristics in the AFO. As a result, a photoelastic material with low freezing temperature was developed to measure the stresses under a person's direct contact loading condition. The three-dimensional stress-1rozen photoelastic models of AFO's for five stages of stance phase such as heel contact, foot flat, mid stance, heel off, and toe off were produced. The results of photoelastic analysis revealed that the stresses developed in the AFO were varied considerably from tensile to compressive or vice versa, during walking. At the posterior part of ankle joint in the AFO, the maximum compressive stress of 1.81MPa was observed in the mid stance, and the maximum tensile stress of 0.74MPa was observed during heel contact. The overall stress levels in the AFO's were low in the toe off phase. The results suggested that the posterior part of ankle joint might be the most fragile part in the AFO.

Evaluation of Insole-equipped Ankle Foot Or thosis for Effect on Gait based on Biomechanical Analysis (인솔 장착형 단하지 보조기의 생체 역학적 분석을 통한 보행 영향성 평가)

  • Jung, Ji-Yong;Kim, Jin-Ho;Kim, Kyung;Trieu, Pham Hai;Won, Yong-Gwan;Kwon, Dae-Kyu;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of insole-equipped ankle-foot-orthoses (AFO) on gait. 10 healthy males who had no history of injury in the lower extremity participated in this study as the subjects. The foot of each subject was first scanned, and the insole fit to the plantar was made using BDI-PCO(Pedcad Gmbh, Germany). The subject then was made to walk on a treadmill under four experimental conditions: 1) normal walking, 2) walking wearing AFO, 3) walking wearing AFO equipped with the insole, 4) walking wearing pneumatic-ankle-foot-orthosis (pAFO) equipped with the insole. During walking, foot pressure data such as maximum force, contacting area, peak pressure, and mean pressure was collected using Pedar-X system (Novel Gmbh, Germany) and EMG activity of lower limb muscles such as gastrocnemius medial head, gastrocnemius lateral head, and soleus was recorded using MP150 EMG module (BIOPAC System Inc., USA). Collected data was then analyzed using paired t-test in order to investigate the effects of the insole. As a result of the analysis, when insole was equipped, overall contacting area was increased while both the highest peak pressure and the mean pressure were significantly decreased, and EMG activity of the lower limb muscles was decreased. On the contrary, the cases of wearing AFO showed the decreased contacting area and the increased pressures. Therefore, the AFO equipped with a proper insole fit well to the foot can help comfortable walking by spreading the pressure over the entire plantar.

Evaluation for Biomechanical Effects of Metatarsal Pad and Insole on Gait (보행 중 중족골 패드와 인솔의 생체역학적 영향성 평가)

  • Choi, Jung-Kyu;Park, In-Sik;Lee, Hong-Jae;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • The purpose of this study was to evaluate the effects of metatarsal pad (MP) compared with barefoot and MP with using different insoles on gait. 15 healthy females who had no history of injury in the lower extremity with an average age of 22.7 year(SD=1.35), height of 160 cm(SD=3.4), weight of 48.8 kg(SD=5.52) and average foot size of 232.5 mm(SD=6.8) participated in this study as the subjects. The subjects walked on a treadmill under four different experimental conditions: 1) walking with barefoot, 2) walking wearing MP 3) walking wearing a soft insole with MP(SIMP), 4) walking wearing a rigid insole with MP(HIMP). During walking, foot pressure data such as force, contacting area, peak pressure, and mean pressure was collected using Pedar-X System(Novel Gmbh, Germany) and EMG activity of lower limb muscles such as tibialis anterior(TA), lateral gastrocnemius(LG), rectus femoris(RF), and musculus biceps femoris(MBF) was gathered using Delsys EMG Work System(Delsys, USA). Collected data was then analyzed using paired t-test in order to investigate the effects of each of experimental conditions. As a result of the analysis, when MP and HIMP were equipped, overall contacting area was increased while the force, peak pressure and the mean pressure were decreased. Especially, when the SIMP was equipped, every data were significantly decreased. In case of EMG, wearing MP, SIMP and HIMP made three muscles(TA, LG, RF)'s activity decrease. A result of the analysis will be able to apply for manufacturing functional shoes, diabetes shoes, senior shoes and lower extremity orthosis. Significance of the study due to a metatarsal pad and the insole is to analyze the changes in muscle strength.