• Title/Summary/Keyword: Walking Network

Search Result 159, Processing Time 0.031 seconds

Classification of Construction Worker's Activities Towards Collective Sensing for Safety Hazards

  • Yang, Kanghyeok;Ahn, Changbum R.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.80-88
    • /
    • 2017
  • Although hazard identification is one of the most important steps of safety management process, numerous hazards remain unidentified in the construction workplace due to the dynamic environment of the construction site and the lack of available resource for visual inspection. To this end, our previous study proposed the collective sensing approach for safety hazard identification and showed the feasibility of identifying hazards by capturing collective abnormalities in workers' walking patterns. However, workers generally performed different activities during the construction task in the workplace. Thereby, an additional process that can identify the worker's walking activity is necessary to utilize the proposed hazard identification approach in real world settings. In this context, this study investigated the feasibility of identifying walking activities during construction task using Wearable Inertial Measurement Units (WIMU) attached to the worker's ankle. This study simulated the indoor masonry work for data collection and investigated the classification performance with three different machine learning algorithms (i.e., Decision Tree, Neural Network, and Support Vector Machine). The analysis results showed the feasibility of identifying worker's activities including walking activity using an ankle-attached WIMU. Moreover, the finding of this study will help to enhance the performance of activity recognition and hazard identification in construction.

  • PDF

A Study on Configuration of the Road Guide Data Model for Visually Impaired Pedestrian (시각적 교통약자를 위한 길안내 데이터 모델 구축에 관한 연구)

  • Park, Sung Ho;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.119-133
    • /
    • 2022
  • Due to the improvement of surveying, mapping and communication techniques, various apps for road direction guides and vehicle navigations have been developed. Although such a development has impacted on walking and driving, there is a limit to improving the daily convenience of the socially impaired people. This is mainly due to the fact that the software have been developed for normal pedestrians and drivers. Therefore, visually impaired people still have problems with the confusion of direction and/or non-provision of risk factors in walking. This study aimed to propose a scheme which constructs data for mobility-impaired or traffic-impaired people based on various geospatial information. The factors and components related to walking for the visually impaired are selected by geospatial data and a walking route guidance network that can be applied to a commercial software. As a result, it was confirmed that road direction guidance would be possible if additional contents, such as braille blocks (dotted/linear), sound signals, bus stops, and bollards are secured. In addition, an initial version of the application software was implemented based on the suggested data model and its usefulness was evaluated to a visually impaired person. To advance the stability of the service in walking for the visually impaired people, various geospatial data obtained by multiple institutes are necessary to be combined, and various sensors and voice technologies are required to be connected and utilized through ICT (Information and Communications Technologies) technology in near future.

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.29-38
    • /
    • 2022
  • This paper proposes a system for classifying gait types using an ensemble deep learning network for gait data measured by a smart insole equipped with multi-sensors. The gait type classification system consists of a part for normalizing the data measured by the insole, a part for extracting gait features using a deep learning network, and a part for classifying the gait type by inputting the extracted features. Two kinds of gait feature maps were extracted by independently learning networks based on CNNs and LSTMs with different characteristics. The final ensemble network classification results were obtained by combining the classification results. For the seven types of gait for adults in their 20s and 30s: walking, running, fast walking, going up and down stairs, and going up and down hills, multi-sensor data was classified into a proposed ensemble network. As a result, it was confirmed that the classification rate was higher than 90%.

An Analysis of the Experience of Users of National Ecological and Cultural Exploration Routes Using Big Data - A Focus on the Buan Masil Road and Gunsan Gubul Road - (빅데이터를 활용한 국가생태문화탐방로 이용자의 경험분석 - 부안 마실길과 군산 구불길을 대상으로 -)

  • Lee, Hyun-Jung;An, Byung-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.151-166
    • /
    • 2020
  • Various experience keywords were derived through text mining analysis of two National Ecological and Cultural Exploration Routes. The results of this study were drawn as follows: The interaction between the experience keywords was analyzed by the degree centrality, closeness centrality, and betweenness centrality value calculated through the centrality analysis of the research site experience keywords. First, In the text mining analysis, 'walking' appeared as the top keyword in the I, II, and III periods of the two target areas. The keywords related to the stay type of "rental cottage" and "recreational forest" were derived for Masil Road in relation to accommodation facilities. However, the keywords related to the accommodation were not derived in Gubul Road. Second, as a result of the centrality analysis, the degree centrality of the keywords "walking", "sea", "look", "salt flats" of Masil Road and "walking", "lake" and "park" of Gubul Road was high. The keywords located at the center are "walking" and "sea" in the Masil Road, and "walking" in the Gubul Road. As an influential keyword, Masil Road is "experience" and Gubul Road is "history". Third, According to the results of the analysis, the keywords that appeared at the top of the Gubul Road are derived from the keywords related to the 1 ~ 8 course, and it is judged that the visitors are visiting the 1 ~ 8 course trail evenly. However, the Gubul Road only appears in the top keyword only for a few courses. Through this, it seems that three courses are intensively visited as the main course of 6 Gubul Road, 6-1 Gubul Road, and 8 Gubul Road.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

The Algorithm for Selecting Parking Lots Considering Drivers' Preference (운전자 선호를 고려한 주차장선택 알고리즘)

  • Jo, Mi-Jeong;Park, Chang-Ho;Lee, Sung-Mo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.223-232
    • /
    • 2008
  • It can be expected, recently, that the traffic congestion grows worse because the 48% of passenger cars are concentrated in the metropolitan area. However, there is an enforcement regulation that must limit onsite parking lot establishment in some downtown, so it is forecasted that parking lot supply is insufficient. Therefore, this study concentrate upon the subject that solves the problem which drivers are difficult to find parking lots because of increasing demand for parking. This study includes the concept about walking distance because the choice of parking lots is happened within walking distance. The algorithm of this study applies to toy-network, and then this study analyze the result of toy-network. It is proper to consider user's preference because the patterns of choice are different. Moreover, this study suggests the vision that will can offer drivers more correct information by real time information sharing in course of ubiquitous age.

The Motion Control of a Quadruped Working Robot Using Wireless Sensor Network (무선 센서 네트워크가 탑재된 사족 보행로봇 제어)

  • Seo, Kyu-Tae;Kim, Ki-Woo;Sim, Jae-Yang;Oh, Jun-Young;Lim, Sung-Duk;Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.499-501
    • /
    • 2004
  • This paper deals with the implementation of a quadruped working robot using wireless sensor network with TinyOS. It is often required to install real time OS and wireless network in the mobile robot field since robots work alone without human intervention and also exchanging their information between robot systems. The suggested controller utilizes a built-in wireless network OS and makes the variance action related with human-kindly motions for a quadruped walking robot. In addition, a kinematics analysis of its structure and control architecture of robot system is suggested and verified the usefulness through the real experiment.

  • PDF

Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device (모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘)

  • Shin, Seung-Hyuck;Kim, Hyun-Wook;Park, Chan-Gook;Choi, Sang-On
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

A Study on the Posture Control of a Humanoid Robot (휴머노이드 로봇의 자세 제어에 관한 연구)

  • Kim Jin-Geol;Lee Bo-Hee;Kong Jung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

Motion Study for a Humanoid Robot Using Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 동작연구)

  • Kong Jung-Shik;Lee Bo-Hee;Kim Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.84-92
    • /
    • 2006
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joint don't maintain optimally, it is hard to sustain the battery power during the working period. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration fur the joint motion and distributed computation of tile humanoid, ISHURO, and suggest its result such as structure of the network and a disturbance observer.