• Title/Summary/Keyword: Walking Algorithm

Search Result 358, Processing Time 0.025 seconds

Smooth Walking Robot Using Genetic Algorithm (유전알고리즘을 이용한 유연한 보행로봇)

  • 한경수;김상범;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.450-453
    • /
    • 2002
  • This paper is concerned with smooth walking robot using genetic algorithm. The new walking algorithm is proposed and we simulated and experimented the algorithm. We suggested the leg trajectory algorithm and balancing trajectory algorithm by applying genetic algorithm. First the leg trajectory algorithm generated the smooth trajectory. Also the balancing trajectory generated the optimal trajectory. We compared results with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

Genetic Algorithm-Based Optimal Walking Trajectory Generation for Biped Walking Robot (유전 알고리즘 기반의 최적 이족 로봇 보행 생성에 관한 연구)

  • Han, Kyoung-Soo;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.169-172
    • /
    • 2002
  • This paper is concerned with walking trajectory generation by applying the genetic algorithm. The walking trajectory is generated though three via-points and genetic algorithm is employed to find velocity and acceleration at each via-point. Also genetic algorithm is applied for balancing joint trajectory. Fitness function is used for minimizing the trajectory. As a result, new algorithm generated the smooth trajectory. The proposed algorithm is verified by the experiment of biped walking robot developed in our Control laboratory, and we compared the result with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

Walking Will Recognition Algorithm for Walking Aids Based on Torque Estimation (모터 토크 추정을 통한 보행보조기의 의지파악 알고리즘)

  • Kong, Jung-Shik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 2010
  • This paper deals with the recognition algorithm of walking will based on torque estimation. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to control aids during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose walking will recognition algorithm by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Here, all the processes are verified by simulation and experiment in the real world.

Walking Algorithm of Biped Robots using Hybrid System Approach (하이브리드 시스템 방법을 이용한 이족보행 로봇의 보행 알고리즘)

  • Chu, Jung-Hyun;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.249-251
    • /
    • 2005
  • For walking patterns of biped robots, knee-bent patterns are used in most cases. However, humans are mostly walking with their knees nearly stretched. In this paper, a human-like walking algorithm using hybrid system is proposed for biped robots, The hybrid system consists of the logically constituted discrete system, in which the discrete states are defined by considering the walking characteristics, and the continuous state system used for motor control. It is shown that the proposed algorithm is effective by experimental studies.

  • PDF

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

Walking Number Detection Algorithm using a 3-Axial Accelerometer Sensor and Activity Monitoring (3축 가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동 모니터링)

  • Yoo, Hyang-Mi;Suh, Jae-Won;Cha, Eun-Jong;Bae, Hyeon-Deok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.253-260
    • /
    • 2008
  • The research for a 3-axial accelerometer sensor has increased dramatically in the fields of cellular phone, PDA, etc. In this paper, we develop a human walking detection algorithm using 3-axial accelerometer sensor and a user interface system to show the activity expenditure in real-time. To measure a walking number more correctly in a variety of walking activities including walking, walking in place, running, slow walking, we propose a new walking number detection algorithm using adaptive threshold value. In addition, we calculate the activity expenditure base on counted walking number and display calculated activity expenditure on UI in real-time. From the experimental results, we could obtain that the detection rate of proposal algorithm is higher than that of existing algorithm using a fixed threshold value about $5{\sim}10%$. Especially, it could be found out high detection rate in walking in place.

Static Walking Algorithm for a Quadruped Robot using Tilting (틸팅을 이용한 4족 보행 로봇의 정적 보행 알고리즘)

  • Lee, Sun-Geol;Jo, Chang-Hyeon;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.675-679
    • /
    • 2001
  • This paper presents walking algorithm for a quadruped robot that does not have an upper body. Tilting motion is added to the planned walking trajectory instead of using an extra body segment that is independent on walking trajectory. Area and tracking algorithms are proposed as tilting method and compared with that of off-line tilting and that of no tilting. Computer simulation shows that stability of tilted walking is more improved than that of the usual walking algorithm for general walking paths. It also shows that the tracking method guarantees stability and best mobility.

  • PDF

Quadruped Walking Control of DRC-HUBO (DRC 휴보의 4족 보행 제어)

  • Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.548-552
    • /
    • 2015
  • In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.