• Title/Summary/Keyword: Walking Algorithm

검색결과 358건 처리시간 0.027초

유전알고리즘을 이용한 유연한 보행로봇 (Smooth Walking Robot Using Genetic Algorithm)

  • 한경수;김상범;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.450-453
    • /
    • 2002
  • This paper is concerned with smooth walking robot using genetic algorithm. The new walking algorithm is proposed and we simulated and experimented the algorithm. We suggested the leg trajectory algorithm and balancing trajectory algorithm by applying genetic algorithm. First the leg trajectory algorithm generated the smooth trajectory. Also the balancing trajectory generated the optimal trajectory. We compared results with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

유전 알고리즘 기반의 최적 이족 로봇 보행 생성에 관한 연구 (Genetic Algorithm-Based Optimal Walking Trajectory Generation for Biped Walking Robot)

  • 한경수;공정식;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.169-172
    • /
    • 2002
  • This paper is concerned with walking trajectory generation by applying the genetic algorithm. The walking trajectory is generated though three via-points and genetic algorithm is employed to find velocity and acceleration at each via-point. Also genetic algorithm is applied for balancing joint trajectory. Fitness function is used for minimizing the trajectory. As a result, new algorithm generated the smooth trajectory. The proposed algorithm is verified by the experiment of biped walking robot developed in our Control laboratory, and we compared the result with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

모터 토크 추정을 통한 보행보조기의 의지파악 알고리즘 (Walking Will Recognition Algorithm for Walking Aids Based on Torque Estimation)

  • 공정식
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.162-169
    • /
    • 2010
  • This paper deals with the recognition algorithm of walking will based on torque estimation. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to control aids during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose walking will recognition algorithm by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Here, all the processes are verified by simulation and experiment in the real world.

하이브리드 시스템 방법을 이용한 이족보행 로봇의 보행 알고리즘 (Walking Algorithm of Biped Robots using Hybrid System Approach)

  • 주정현;임미섭;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.249-251
    • /
    • 2005
  • For walking patterns of biped robots, knee-bent patterns are used in most cases. However, humans are mostly walking with their knees nearly stretched. In this paper, a human-like walking algorithm using hybrid system is proposed for biped robots, The hybrid system consists of the logically constituted discrete system, in which the discrete states are defined by considering the walking characteristics, and the continuous state system used for motor control. It is shown that the proposed algorithm is effective by experimental studies.

  • PDF

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

3축 가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동 모니터링 (Walking Number Detection Algorithm using a 3-Axial Accelerometer Sensor and Activity Monitoring)

  • 유향미;서재원;차은종;배현덕
    • 한국콘텐츠학회논문지
    • /
    • 제8권8호
    • /
    • pp.253-260
    • /
    • 2008
  • 최근 핸드폰, PDA 등에서 가속도센서를 이용한 연구가 많이 증가하고 있다. 본 논문에서는 3축 가속도센서를 이용해 사람이 보행 시 발생하는 데이터를 취득하여 사람의 걸음 수를 계산해 내는 알고리즘과 활동량을 실시간으로 모니터링 할 수 있는 UI 시스템을 개발하였다. 걷기, 제자리 걷기, 뛰기, 천천히 걷기 등의 각 상황별 걸음 수를 정밀하게 측정하기 위해 적응적인 임계값을 사용하는 보행 횟수 검출 알고리즘을 제안하였다. 또 이러한 알고리즘에 의해 얻은 보행 횟수를 이용해서 활동량으로 환산하고 UI화면에 실시간으로 보임으로써 정량화된 활동량으로 실시간 모니터링이 가능하도록 하였다. 실험결과 제안한 보행 횟수 검출 알고리즘이 에너지 기반의 기존의 고정 임계값을 이용하는 알고리즘 보다 $5{\sim}10%$ 정확도가 높은 결과 값을 얻을 수 있었으며 특히, 천천히 걷기에서 정확도가 높아진 것을 확인하였다.

틸팅을 이용한 4족 보행 로봇의 정적 보행 알고리즘 (Static Walking Algorithm for a Quadruped Robot using Tilting)

  • 이순걸;조창현;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.675-679
    • /
    • 2001
  • This paper presents walking algorithm for a quadruped robot that does not have an upper body. Tilting motion is added to the planned walking trajectory instead of using an extra body segment that is independent on walking trajectory. Area and tracking algorithms are proposed as tilting method and compared with that of off-line tilting and that of no tilting. Computer simulation shows that stability of tilted walking is more improved than that of the usual walking algorithm for general walking paths. It also shows that the tracking method guarantees stability and best mobility.

  • PDF

DRC 휴보의 4족 보행 제어 (Quadruped Walking Control of DRC-HUBO)

  • 김정엽
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.548-552
    • /
    • 2015
  • In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.