• Title/Summary/Keyword: Walker Constellation

Search Result 9, Processing Time 0.026 seconds

Space Mission Design For Reconnaissance Micro-Satellite Constellation Using Sun Synchronous-Ground Repeating Orbit (태양동기-지상반복 궤도를 활용한 군 정찰용 초소형 위성군 설계)

  • Cho, Sungmin;Cho, Namsuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.125-138
    • /
    • 2020
  • One of the most important steps to consider in utilizing micro-satellites for surveillance or reconnaissance operations is the design of the satellite constellation. The Walker-Delta constellation which is commonly used in designing satellite constellations is not ideal for this operation in which military satellites are required to monitor specific regions continuously in a stable manner. This study aims to discuss the methodology for designing a satellite constellation that is capable of monitoring the fixed region at the fixed time each day by using the Sun synchronous Orbit. The BB(Beach Ball) constellation that we propose outperforms the Walker-Delta constellation in terms of robustness and it holds the merit of being simple in its design, thereby making future expansions more convenient. We expect the BB constellation will have a high applicability as the operational concept of military surveillance satellites is established in the near future.

Orbit Design to Optimize Revisit Performance of Low Earth Orbit Satellite Constellation (저궤도 군집위성의 재방문 성능 최적화를 위한 위성궤도 설계)

  • Soung-Sub Lee;Jong-Pil Kim;Eung-Noh You;Jae-Hyuk Youn;Ho-Hyun Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.502-509
    • /
    • 2023
  • This study presents a satellite constellation method that achieves optimal revisit performance by utilizing genetic algorithm techniques. The Walker method is a global coverage concept, and there are limitations to target-centered constellation considering the strategic environment of the Korean Peninsula. To overcome these limitations, targets are set in major areas of interest in North Korea, orbit elements with optimal revisit performance for each target are searched, and based on this, the number of satellites optimized for each target is derived using a genetic algorithm. The results of this study demonstrate the performance of the optimized constellation by applying phasing rules to achieve the desired revisit performance.

Optimal Design of Satellite Constellation Korean Peninsula Regions (한반도 지역의 효율적인 관측을 위한 최적의 위성군 설계)

  • Kim, Nam-Kyun;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.181-198
    • /
    • 2008
  • Designing satellite constellations providing partial coverage of certain regions becomes more important as small low-altitude satellites receives an increasing attention due to its cost-effectiveness analysis. Generally, Walker's method is a standard constellation method for global coverage but not effective for partial coverage. The purpose of this study is to design optimal constellation of satellites for effective observation in Korean peninsula regions. In this study, a new constellation design method is presented for partial coverage, using direct control of satellites' orbital elements. And also, a ground repeating circular orbit is considered for each satellite's orbit with the Earth oblateness effect. As the results, at least four satellites are required to observe the Korean peninsula regions effectively when minimum elevation angle is assumed as 12 degrees. The results from new method are better than those from the best Walker method. The proposed algorithm will be useful to design satellite constellation missions of Korea in future.

Design of SAR Satellite Constellation Configuration for ISR Mission (ISR 임무를 위한 SAR 위성의 군집궤도 배치형상 설계)

  • Kim, Hongrae;Song, Sua;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • For the Earth observation satellite for ISR mission, a satellite constellation can be utilized to observe a specific area periodically and ultimately increase the effectiveness of the mission. The Walker-Delta method was applied to design constellation orbits with four satellites, which could detect abnormal activities in AoI(Area of Interest). To evaluate the effectiveness of the mission, a revisiting time was selected as a key requirement. This paper presents the mission analysis process for four SAR satellites constellation as well as the result of constellation configuration design to meet the requirements. Figure of Merits analysis was performed based on algorithm developed. Finally, it was confirmed that the constellation orbit with four different orbital planes is likely to be appropriate for ISR mission.

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

Design of Regional Coverage Low Earth Orbit (LEO) Constellation with Optimal Inclination

  • Shin, Jinyoung;Park, Sang-Young;Son, Jihae;Song, Sung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.217-227
    • /
    • 2021
  • In this study, we describe an analytical process for designing a low Earth orbit constellation for discontinuous regional coverage, to be used for a surveillance and reconnaissance space mission. The objective of this study was to configure a satellite constellation that targeted multiple areas near the Korean Peninsula. The constellation design forms part of a discontinuous regional coverage problem with a minimum revisit time. We first introduced an optimal inclination search algorithm to calculate the orbital inclination that maximizes the geometrical coverage of single or multiple ground targets. The common ground track (CGT) constellation pattern with a repeating period of one nodal day was then used to construct the rest of the orbital elements of the constellation. Combining these results, we present an analytical design process that users can directly apply to their own situation. For Seoul, for example, 39.0° was determined as the optimal orbital inclination, and the maximum and average revisit times were 58.1 min and 27.9 min for a 20-satellite constellation, and 42.5 min and 19.7 min for a 30-satellite CGT constellation, respectively. This study also compares the revisit times of the proposed method with those of a traditional Walker-Delta constellation under three inclination conditions: optimal inclination, restricted inclination by launch trajectories from the Korean Peninsula, and inclination for the sun-synchronous orbit. A comparison showed that the CGT constellation had the shortest revisit times with a non-optimal inclination condition. The results of this analysis can serve as a reference for determining the appropriate constellation pattern for a given inclination condition.

Analysis on Figure of Merits of Small SAR Constellation Satellites for Targets Detection (표적탐지를 위한 소형 SAR 군집위성의 성능지수 분석)

  • Song, Sua;Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.130-142
    • /
    • 2019
  • For a preemptive strike against a Time Critical Target(TCT), such as Transporter-Erector-Launcher(TEL), the detection capability of capturing launch signals in the Area of Interest(AoI) is important. In this study, the characteristics of the revisit time and the response time of 6~48 small SAR constellation satellites were analyzed. In particular, the revisit time was analyzed for all regions of North Korea and specific regions, and the response time was classified into [Scenario 1] to identify fixed targets and [Scenario 2] to detect and identify moving targets. In particular, the response time analysis for the TCT detection mission operation in [scenario 2] was performed through optimization analysis of observation cumulative coverage for a specific area. Finally, the configuration of constellation satellites for optimal performance of the detection mission was estimated.

Analysis of Orbital Deployment for Micro-Satellite Constellation (초소형 위성군 궤도배치 전략 분석)

  • Song, Youngbum;Shin, Jinyoung;Park, Sang-Young;Jeon, Soobin;Song, Sung-Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • As interest in microsatellites increases, research has been actively conducted recently on the performance and use, as well as the orbital design and deployment techniques, for the microsatellite constellations. The purpose of this study was to investigate orbital deployment techniques using thrust and differential atmospheric drag control (DADC) for the Walker-delta constellation. When using thrust, the time and thrust required for orbital deployment vary, depending on the separation speed and direction of the satellite with respect to the launch vehicle. A control strategy to complete the orbital deployment with limited performance of the propulsion system is suggested and it was analyzed. As a result, the relationship between the deployment period and the total thrust consumption was derived. It takes a relatively longer deployment time using differential air drag rather than consuming thrusts. It was verified that the satellites can be deployed only with differential air drag at a general orbit of a microsatellite constellation. The conclusion of this study suggests that the deployment strategy in this paper can be used for the microsatellite constellation.