DOI QR코드

DOI QR Code

Analysis on Figure of Merits of Small SAR Constellation Satellites for Targets Detection

표적탐지를 위한 소형 SAR 군집위성의 성능지수 분석

  • Song, Sua (Dept. of Aerospace and Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Kim, Hongrae (Dept. of Aerospace and Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Chang, Young-Keun (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2018.09.20
  • Accepted : 2018.12.28
  • Published : 2019.02.01

Abstract

For a preemptive strike against a Time Critical Target(TCT), such as Transporter-Erector-Launcher(TEL), the detection capability of capturing launch signals in the Area of Interest(AoI) is important. In this study, the characteristics of the revisit time and the response time of 6~48 small SAR constellation satellites were analyzed. In particular, the revisit time was analyzed for all regions of North Korea and specific regions, and the response time was classified into [Scenario 1] to identify fixed targets and [Scenario 2] to detect and identify moving targets. In particular, the response time analysis for the TCT detection mission operation in [scenario 2] was performed through optimization analysis of observation cumulative coverage for a specific area. Finally, the configuration of constellation satellites for optimal performance of the detection mission was estimated.

이동식미사일발사대(TEL)와 같은 시한성 긴급표적(TCT)에 대한 선제타격을 위해서는 관심지역(AoI)에서의 발사징후를 포착하는 탐지성능이 중요하다. 탐지성능의 극대화를 위해서는 재방문주기 및 시스템응답주기의 최소화를 위해 가능한 한 다수의 군집위성 전개가 필요하다. 본 연구에서는 6~48기의 소형 SAR 군집위성 전개 시 재방문주기와 응답주기의 특성을 분석하였다. 재방문주기는 북한의 전지역 및 특정지역에 대해 분석하였으며, 응답주기는 고정표적을 식별하는 [시나리오 1]과 이동표적을 탐지 및 식별하는 [시나리오 2]로 분류하여 분석을 수행하였다. 특히, [시나리오 2]의 TCT 탐지임무 운용에 대한 응답주기 분석은 특정 면적에 대한 관측 누적 커버리지의 최적화 분석을 통해 수행하였다. 그리고 탐지임무의 최적 성능을 위한 군집궤도 형상을 분석하였다.

Keywords

References

  1. Lo, H. S. E., and Au, T. A., "Improving the Kill Chain for Prosecution of Time Sensitive Targets," edited by Alisson V. Brito. in Dynamic Modeling, 2010, pp. 93-110.
  2. Broek, A., Dekker, R., and Steeghs, P., "Concepts for monitoring and surveillance using Space borne SAR systems," TNO Defense Security and Safety the Hague (Netherlands), Vol. 23, No. 4, May 1989, pp. 123-145.
  3. Shin, J. M., and Ra, S. W., "Technology of Electro-Optical Imaging Sensor," Current Industrial and Technological Trends in Aerospace, Vol. 10, No. 2, Dec. 2012, pp. 83-92.
  4. Won, Y. J., and Yoon, J. C., "SAR Payload Technology for Next Generation Satellite," Aerospace Engineering and Technology, Vol. 13, No. 2, Nov. 2014, pp. 131-141.
  5. Kwak, Y. K., "Technological Trend of Synthetic Aperture Radar(SAR)," The Proceedings of the Korea Electromagnetic Engineering Society, Vol. 2, No. 6, Nov. 2011, pp. 4-16.
  6. Quartz, https://qz.com/1042673/the-us-is-funding-silicon-valleys-space-industry-to-spot-north-korean-missiles-before-they-fly.
  7. Sandau, R., "Status and trends of small satellite missions for Earth observation," Acta Astronautica, Vol. 66, No. 1-2, 2010, pp. 1-12. https://doi.org/10.1016/j.actaastro.2009.06.008
  8. Walker, J. G., "Circular Orbit Patterns Providing Continuous Whole Earth Coverage," Royal Aircraft Establishment Tech. Rep. 70211, Nov. 1970.
  9. Kim, H. R., and Chang, Y. K., "Mission Scheduling Optimization of SAR Satellite Constellation for Minimizing System Response Time," Aerospace Science and Technology, Vol. 40, 2015, pp. 17-32. https://doi.org/10.1016/j.ast.2014.10.006
  10. Kim, H. R., Song, S. A., and Chang, Y. K., "Design of SAR Satellite Constellation Configuration for ISR Mission," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 1, 2017, pp. 54-62. https://doi.org/10.5139/JKSAS.2017.45.1.54
  11. Savitri, T., Kim, Y. J., Jo, S. J., and Bang, H. C., "Satellite Constellation Orbit Design Optimization with Combined Genetic Algorithm and Semi analytical Approach," International Journal of Aerospace Engineering, Vol. 2017, 2017, Article ID 1235692, 17 pages.