• Title/Summary/Keyword: Walk test

Search Result 409, Processing Time 0.024 seconds

The Evaluation of Lower Extremity Muscles in Combat shoes Custom Foot Orthotics (전투화 맟춤형 발보장구 착용 시 하지 근육 활동의 평가)

  • Suh, Sung-Hyeok;Kim, Ro-Bin;Cho, Young-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2008
  • The purpose of this study was to examine the effects of customized foot orthotics on lower extremity muscle activity and fatigue during march in combat boots. Four volunteers with normal foot and five volunteers with excessive pronation foot among soldiers on service were fitted with foot orthotics. The electromyography signal from activity of low extremity muscles were collected with surface electromyography device during walking on the treadmill. The walk on the treadmill was performed with a speed of 4.5 km/h. The experiment design for reseach wes composed two experimentation. The first experiment was to examine the muscle activity of lower extremity between normal foot and excessive pronator foot during march. The second experiment was to examine the muscle activity of lower extremity between wearing orthotics and no wearing orthotics. These data were analyzed by the averaged integral EMG and the mean power frequency. The analyzed results were compared by independent T-test method and paired T-test method of SPSS(windows version 12.0). The result of the study were the muscle activity on pronator foot tend to increase during march but a statistically significant increase in muscle fatigue of vastus lateralis and fibularis longus. A statistically significant decrease in muscle activity of anterior tibialis and fibularis longus and fatigue occurred using the customized foot orthotics in volunteers with excessive pronation foot compared to volunteers with normal foot. Clinically, the application of orthotics for the soldiers with excessive pronation foot appears to delay muscle fatigue and prevent from variable foot injuries. This may contribute to enhancing fighting efficiency.

Site Characteristics Around the Gongsansung Circular Pond in Gongju Based on the Seismic Methods (탄성파탐사를 이용한 공주 공산성 원형연못의 지반조사)

  • Oh, Jin-Yong;Suh, Man-Cheol
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.623-631
    • /
    • 2005
  • We applied the seismic method to investigate the site characteristics around the Circular Pond (top diameter 7.3 m, bottom diameter 3 m, and depth 4.78 m) at the Ssangsujung Park within the Gongsansung in Gongju. Previous excavations for the cultural assets beneath the Ssangsujung Park disclosed the assumed site of the Palace of the Beakje Dynasty and the Circular Pond containing the Bakje relics. We demonstrated that the seismic prospecting can be applicable to delineate the underground structure around the cultural properties by the three kinds of seismic approaches: walk-away test, conventional refraction method, and equal-distance refraction survey. The last method which is designed by this work ran detect the I-W variations of seismic velocity in the subsurface medium across the Circular Pond on the basis of the difference of the P-wave arrival times between the 1-m-spacing 24 geophones and the corresponding 24 shots parallel with the geophone profile. From the combined results, prominent three-layer velocity structure is observed around the Circular Pond. The bottom layer is interpreted as the basement rock which is exposed near the Ssangsujung whereas the upper layer with relatively lower velocities is interpreted to be the artificial covering. The basement depth beneath the Circular Pond is deeper than the norhern area. The western basement of Circular Pond has the thicker weaker layer compared with the eastern part. Thus, the middle layer could be constructed as the artificial foundation during the Beakje Dynasty. Consequently, the Kong-sansung Circular Pond is possibly built upwardly rather than digging.

Testing The Healing Environment Conditions for Nurses with two Independent Variables: Visibility Enhancement along with Shortening the Walking Distance of the Nurses to Patient - Focused on LogWare stop sequence and space syntax for U-Shape, L- Shape and I-Shape NS-

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • Purpose: Maximizing human comfort in design of medical environments depends immensely on specialized architects particularly critical care design; the study proposes Evidence-Based Design as an apparent analog to Evidence-Based Medicine. Healthcare facility designs are substantially based on the findings of study in an effort to design environments that augment care by improving patient safety and being therapeutic. On SPSS (Statistical Package for Social Science) t-test is applied to simulate two independent variables of PDR (Pre Design-Research) and POE (Post- Occupancy Evaluation). PDR is conducted on relatively new hospital Hallym University Dongtan Sacred Heart Hospital to analyse visibility from researchers' point of view, here the ICU is arranged in I-Shape. POE is applied on Dongguk University Ilsan Hospital to simulate walking on LogWare where two NS are designed based on L- Shape and Seoul St. Mary's Hospital, The Catholic University of Korea where five NS are functional for ICU Intensive Care Unit, Surgical Intensive Care Unit (SICU), Medical Intensive Care Unit (MICU), Critical Care Unit (CCU), Korean Oriental Medical Care Unit which are mostly arranged in U-Shape, and walking pattern is recognized to be in a zigzag path. Method: T-Test is applied on two dependent communication variables: walkability and visibility, with confidence interval of 95%. This study systematically analyses the Nurse Station (NS) typo-morphology, and simulates nurse horizontal circulation, by computing round route visits to patient's bed, then estimating minimum round route on LogWare stop sequence software. The visual connectivity is measured on depth map graphs. Hence the aim is to reduce staff stress and fatigue for better patients care by minimizing staff horizontal travel time and to facilitate nurse walk path and support space distribution by increasing effectiveness in delivering care. Result: Applying visibility graph and isovist field on space syntax on I- Shape, L- Shape and U- Shape ICU (SICU, MICU and CCU) configuration, I-shape facilitated 20% more patients in linear view as they stir to rise from their beds from nurse station compared to U-shape. In conclusion, it was proved that U-Shape supply minimum walking and maximum visibility; and L shape provides just visibility as the nurse is at pivot. I shape provides panoramic view from the Nurse Station but very rigorous walking.

The Usefulness of a Wearable Smart Insole for Gait and Balance Analyses After Surgery for Adult Degenerative Scoliosis: Immediate and Delayed Effects (척추측만증 환자의 수술 효과 평가 수단으로서 웨어러블 스마트 깔창을 이용한 보행분석의 유용성)

  • Seo, Min Seok;Shin, Myung Jun;Kwon, Ae Ran;Park, Tae Sung;Nam, Kyoung Hyup
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.184-192
    • /
    • 2020
  • This study presents a gait analysis method (including time series analysis) using a smart insole as an objective and quantitative evaluating method after lumbar scoliosis surgery. The participant is a degenerative lumbar scoliosis patient. She took 3-min-gait-test four times(before and 8, 16, and 204-days after surgery) and 6-min-gait-test once(204-days after surgery) with smart-insoles in her shoes. Each insole has 8-pressure sensors, an accelerometer, and a gyroscope. The measured values were used to compare the characteristics of gait before and after surgery. The analysis showed that all of the patient's gait parameters improved after surgery. And after 6 months, the gait was more stable. However, after long walk, the swing duration of one leg was slightly shorter than that of the other again. It was a preclinical problem that could not be found in the visual examination by the practitioner. With this analysis method we could evaluate the improvement of patient quantitatively and objectively. And we could find a preclinical problem. This analysis method will lead to the studies that define and distinguish gait patterns of certain diseases, helping to determine appropriate treatments.

Current Status of the KMTNet Active Nuclei Variability Survey (KANVaS)

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Multi-wavelength variability is a staple of active galactic nuclei (AGN). Optical variability probes the nature of the central engine of AGN at smaller linear scales than conventional imaging and spectroscopic techniques. Previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of intra-night optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Using KMTNet, we aim to study the intra-night variability of ~1000 AGN at a magnitude depth of ~19mag in R band over a total area of ${\sim}24deg^2$ on the sky. Test data in the COSMOS, XMM-LSS, and S82-2 fields was obtained over 4, 6, and 8 nights respectively during 2015, in B, V, R, and I bands. Each night was composed of 5-13 epoch with ~30 min cadence and 80-120 sec exposure times. As a pilot study, we analyzed data in the COSMOS field where we reach a magnitude depth of ~19.5 in R band (at S/N~100) with seeing varying between 1.5-2.0 arcsec. We used the Chandra-COSMOS catalog to identify 166 AGNs among 549 AGNs at B<23. We performed differential photometry between the selected AGN and nearby stars, achieving photometric uncertainty ~0.01mag. We employ various standard time-series analysis tools to identify variable AGN, including the chi-square test. Preliminarily results indicate that intra-night variability is found for ~17%, 17%, 8% and 7% of all X-ray selected AGN in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms there are more variable AGN at shorter wavelengths and that intra-night variability most likely originates in the accretion disk of these objects. We will briefly discuss the quality of the data, challenges we encountered, solutions we employed for this work, and our updated future plans.

  • PDF

Effects of the Whole-body Vibration Exercise Combined with Ankle Joint Mobilization on the Gait Function and Balancing Ability in Stroke Patients: A Preliminary Randomized, Controlled Study (발목관절 가동술과 결합한 전신진동운동이 뇌졸중 환자의 보행 기능과 균형 능력에 미치는 영향: 무작위 대조 예비연구)

  • Su-Bong, Son;Kyoung-Wook, Choi;Tae-Wu, Kim;Sang-Young, Park;Yong-Jun, Cha
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2022
  • PURPOSE: This study was performed to investigate the effects of the whole-body vibration exercise combined with ankle joint mobilization on the gait and balancing ability in patients with hemiplegic stroke. METHODS: A total of 19 patients at a rehabilitation hospital who had suffered a hemiplegic stroke were randomly assigned to the experimental group (whole-body vibration exercise combined with ankle joint mobilization, n=10) or control group (whole-body vibration exercise, n=9). All participants underwent 30 min of comprehensive rehabilitation therapy (5 × /week for 6 weeks). Additionally, the experimental group performed the whole body vibration exercise and ankle joint mobilization (15 minutes each, 30 minutes total, 3 × / week for 6 weeks). In the control group, only the whole- body vibration exercise was performed in the same manner and not the ankle joint mobilization. The gait and balancing abilities were measured before and after the 6-week training. RESULTS: Significant improvements were observed in the 10-m walk test, timed up-and-go (TUG) test, center of pressure (COP) path length, and COP path velocity in the experimental group (p < .05). The experimental group showed a larger decrease in the COP path length and velocity than the control group (COP path length, -10.27 mm vs. -3.67 mm, p < .05; COP path velocity, -.33 cm/sec vs. -.13 cm/sec, p < .05, respectively). CONCLUSION: The whole-body vibration exercise combined with ankle joint mobilization could be effective in improving the gait and balancing ability of stroke patients and could also be more effective for improving the static balance ability than the general whole-body vibration exercise alone.

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance (직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Hyeok-Jae;Lee, Jeong-Hwan;Kwak, Hwi-Kuen;Ko, Yun-Su;Chae, Je-Wook;Oh, Su-Hyeon;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the type and measurement location of a fabric strain gauge sensor on the detection performance for respiratory signals. We implemented two types of sensors to measure the respiratory signal and attached them to a band to detect the respiratory signal. Eight healthy males in their 20s were the subject of this study. They were asked to wear two respiratory bands in turns. While the subjects were measured for 30 seconds standing comfortably, the respiratory was given at 15 breaths per minute were synchronized, and then a 10-second break; subsequently, the entire measurement was repeated. Measurement locations were at the chest and abdomen. In addition, to verify the performance of respiratory measurement in the movement state, the subjects were asked to walk in place at a speed of 80 strides per minute(SPM), and the respiratory was measured using the same method mentioned earlier. Meanwhile, to acquire a reference signal, the SS5LB of BIOPAC Systems, Inc., was worn by the subjects simultaneously with the experimental sensor. The Kruskal-Wallis test and Bonferroni post hoc tests were performed using SPSS 24.0 to verify the difference in measurement performances among the group of eight combinations of sensor types, measurement locations, and movement states. In addition, the Wilcoxon test was conducted to examine whether there are differences according to sensor type, measurement location, and movement state. The results showed that the respiratory signal detection performance was the best when the respiratory was measured in the chest using the CNT-coated fabric sensor regardless of the movement state. Based on the results of this study, we will develop a chest belt-type wearable platform that can monitor the various vital signal in real time without disturbing the movements in an outdoor environment or in daily activities.

A Study on the Lower Body Muscle Strengthening System Using Kinect Sensor (Kinect 센서를 활용하는 노인 하체 근력 강화 시스템 연구)

  • Lee, Won-hee;Kang, Bo-yun;Kim, Yoon-jung;Kim, Hyun-kyung;Park, Jung Kyu;Park, Su E
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2095-2102
    • /
    • 2017
  • In this paper, we implemented the elderly home training contents provide individual exercise prescription according to the user's athletic ability and provide personalized program to the elderly individual. Health promotion is essential for overcoming the low health longevity of senior citizens preparing for aging population. Therefore, the lower body strengthening exercise to prevent falls is crucial to prevent a fall in the number of deaths of senior citizens. In this game model, the elderly are aiming at home training contents that can be found to feel that the elderly are going out of walk and exercising in the natural environment. To achieve this, Kinect extracts a specific bone model provide by the Kinect Sensor to generate the feature vectors and recognizes the movements and motion of the user. The recognition test using the Kinect sensor showed a recognition rate of about 80 to 97%.

A System with Efficient Managing and Monitoring for Guidance Device (보행안내 기기의 효과적인 관리 및 모니터링을 위한 시스템)

  • Lee, Jin-Hee;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.187-194
    • /
    • 2016
  • When performing experiments in indoor and outdoor environment, we need a system that monitors a volunteer to prevent dangerous situations and efficiently manages the data in real time. We developed a guidance device for visually impaired person that guides the user to walk safely to the destination in the previous study. We set a POI (Point of Interest) of a specific location indoors and outdoors and tracks the user's position and navigate the walking path using artificial markers and ZigBee modules as landmark. In addition, we develop path finding algorithm to be used for navigation in the guidance device. In the test bed, the volunteers are exposed to dangerous situations and can be an accident due to malfunction of the device since they are visually impaired person or normal person wearing a eye patch. Therefore the device requires a system that remotely monitors the volunteer wearing guidance device and manages indoor or outdoor a lot of map data. In this paper, we introduce a managing system that monitors the volunteers remotely and handles map data efficiently. We implement a management system which can monitor the volunteer in order to prevent a hazardous situation and effectively manage large amounts of data. In addition, we verified the effectiveness of the proposed system through various experiments.