• Title/Summary/Keyword: Wake model

Search Result 491, Processing Time 0.026 seconds

A COMPARATIVE STUDY OF LATTICE BOLTZMANN AND VOLUME OF FLUID METHOD FOR TWO-DIMENSIONAL MULTIPHASE FLOWS

  • Ryu, Seung-Yeob;Ko, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.623-638
    • /
    • 2012
  • The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

Heat and Mass Transfer in Highly Porous Media (고 다공성 물질에서 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.685-693
    • /
    • 1990
  • The heat transfer coefficients were calculated numerically to see the effects of radiation around the porous medium put on the flat plate at a distance from the leading edge of flat plate for the two-dimensional laminar flows. To verify the analytical model developed and invoke the heat/mass transfer analogy, an experiment was carried out using naphthalene sublimation technique. From the effects of the wake, Sherwood number is maximum around the region where the porous medium is attached. The theoretical results correspond well with the experimental results at small Darcy number. Permeability of ceramic blocks used for experiment was also measured and the Forchheimer equation is applicable in our measurement range.

A Study on the Performance Characteristic of a Fire Pump with Various Operating Conditions (운전조건 변화에 따른 소방펌프 성능특성 연구)

  • Park, Sung-Kyu;Noh, Go-Sub;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2011-2016
    • /
    • 2004
  • In order to develop a high efficiency fire pump, its performance characteristics with various operating conditions are investigated. The governing equations are derived from making using of three-dimensional Navier-Stokes equations with the standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, CFX, pressure distribution and flow fields in a fire pump are calculated with various ranges of rotating speed 800-2400 rpm. Particularly, calculations with multiple frames of reference method between the rotating and stationary parts of the domain are carried out. With the help of numerical results, correlation formula between the casing pressure and the efficiency is derived.

  • PDF

Computation of Flow around a Container Ship with Twin-Skegs using the CFD (CFD를 이용한 쌍축 컨테이너선 주위의 유동계산)

  • Kim, Hee-Taek;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • In this study. a numerical analysis has been performed for the turbulent flow around a 15,000TEU twin-skeg container ship using a commercial CFD code. FLUENT. The computed results have been compared with the model test data from MOERI. We investigated viscous resistance coefficient. wake distribution and characteristics of the shear flow according to the grid numbers. Although the free surface is approximated by the plane of symmetry in this work. the calculated axial velocity and transverse vector show a good agreement with the MOERI experimental data except for the region of 0.9 level of axial velocity at the propeller plane. The numerical analysis show that commercial CFD code is useful tool for the evaluation of complex hull form with twin-skegs.

Analysis of Contra-Rotating Propellers in Setady Flow by a Vortex Lattice Method (와류격자법에 의한 정상유동중의 상반회신 프로펠러 성능해석)

  • 서성부
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.36-43
    • /
    • 2000
  • In this paper a Vortex Lattice Method is used to predict the performances of a contra-Rotating Propeller. Greeley and Kerwin's(1982) wake model is adopted instead of the exact trailing vortex geometry. The interaction of the two propellers is treated by the sense that the induction of one propeller upon the other propeller is averaged in the circumferential direction . Two single propellers (DTRC 4119 & DTRC 4842) are chosen and compared with the experimental and other numerical results published. Then the computational results for three CRP's (4-0-4 CRP(DTRC 3686+DTRC 3687A) 4-0-5 CRP(DTRC 3686+DTRC 3849) & DTRC CRT(DTRC 5067+DTRC 5068) are compared with the experimental and numerical results published. The interaction of both propellers by the change of inflow velocity and circulation of each propeller is investigated.

  • PDF

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF

An Experimental Study on Hull Attitude and Resistance Components of a Ship (선박의 항주자세와 저항성분에 관한 실험적 연구)

  • Suak-Ho,Van;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.11-19
    • /
    • 1987
  • A Series 60, $C_b=0.60$ model was tested in the towing tank of Seoul National University. Total resistance, hull attitude, wake distributions and wave measured at FR condition(free trim and sinkage) and FX condition(fixed trim and sinkage). From the measured data, residual, viscous and wave pattern resistance components were evaluated and compared. It is found that the changes in wetted surface area should be considered in predictions of frictional resistances, and can be easily found from hydrostatic data and measured mean sinkages without additional tests. Applications of the concept to the geosim tests of Series 60, Wigley, Lucy Ashton models show that the conventional extrapolation method can be improved considerably.

  • PDF

A Study on the International Competitiveness of Insurance Industry in the wake of the Fourth Industrial Revolutio (4차 산업혁명에 따른 보험산업의 국제경쟁력 변화에 대한 연구)

  • Park, Eunyub
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.4
    • /
    • pp.17-33
    • /
    • 2022
  • This study measures the internal and external competitiveness of 35 OECD countries in the insurance industry. We analyze whether variables related to the Fourth Industrial Revolution affect international competitiveness by applying a nonlinear autoregressive distributed lag model. As a result, the competitiveness of life insurance foreign companies in internal is showing positive responses in high income inequality countries. In addition, insurance companies in countries with low income inequality have shown high performance in external. The non-life insurance industry is less sensitive to shocks than life insurance. This is because non-life insurance is a more dangerous industry than life insurance and there are many restrictions on policies and regulations. The reason is that non-life insurance is a more dangerous industry than life insurance and there are many restrictions on policies and regulations.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller (상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구)

  • Paik, Kwang-Jun;Lee, Jinsuk;Lee, Taegu;Hoshino, Tetsuji;Park, Hyung-Gil;Seo, Jongsoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.