• Title/Summary/Keyword: Wake effect

Search Result 418, Processing Time 0.029 seconds

Influence of unsteady wake on a turbulent separation bubble (난류박리기포에 대한 비정상 후류의 영향)

  • Chun, Se-Jong;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.294-299
    • /
    • 2001
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency $(0{\leq}St_H{\leq}0.20)$. The Reynolds number based on the cylindrical rod was $Re_d=375$. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of $X_R$. The wall pressure fluctuations on the blunt body were analyzed in terms of the spectrum and the coherence.

  • PDF

Influence of Unsteady Wake on a Turbulent Separation Bubble (난류박리기포에 대한 비정상 후류의 영향)

  • Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.353-361
    • /
    • 2002
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency (0 St$\_$H/ 0.20). The Reynolds number based on the cylindrical rod was Re$\_$d/=375. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of x$\_$R/. The wall pressure fluctuations on the blunt body were analysed in terms of the spectrum and the coherence.

Wind Turbine Wake Model by Porous Disk CFD Model (다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구)

  • Shin, Hyungki;Jang, Moonseok;Bang, Hyungjun;Kim, Soohyun
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

Wake Losses and Repositioning of Wind Turbines at Wind Farm (풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구)

  • Park, Kun-Sung;Ryu, Ki-Wahn;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

Visualization Study on a Reduced Frequency of a Dragonfly type wing (잠자리 유헝 날개의 무차원 진동수에 따른 가시화 연구)

  • Kim Song Hak;Chang Jo Won
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.58-65
    • /
    • 2004
  • The purpose of this visualization study is to investigate the effect of reduced frequency qualitatively by examining wake patterns for dragonfly flight motion. Dragonflies have two pairs of wing (a forewing and hindwing) and flight is achieved by a pitching and plunging, so it makes a separation over the wings. The separation affects the wake pattern and changed wake pattern has an influence on lift, drag, and propulsion. This experiment was conducted by using a smoke wire technique and a camera fixed above the test section used to take a photograph of the wake. An electronic device is mounted below the test section to find the exact mean positional angle of the wing. The reduced frequency in the experiment is 0.15, 0.3 and 0.45. Results show that reduced frequency is closely related to the wake pattern that determines flight efficiency.

  • PDF

Circadian Rhythms of Melatonin, Thyroid-Stimulating Hormone and Body Temperature: Relationships among those Rhythms and Effect of Sleep-Wake Cycle

  • Kim, Mi-Seung;Lee, Hyun J.;Im, Wook-Bin
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • Plasma melatonin, thyroid-stimulating hormone (TSH) and body temperature were measured simultaneously and continuously before and after the sleep-wake cycle was shifted in 4 healthy males and changes in the circadian rhythm itself and in the phase relationship among these circadian rhythms were determined. Normal sleep-wake cycle (sleep hours: 2300-0700) was delayed by 10 h (sleep hours: 0900-1700) during the experiment. Even after this shift the typical melatonin rhythm was maintained: low during daytime and high during night. The melatonin rhythm was gradually delayed day by day. The TSH rhythm was also maintained fundamentally during 3 consecutive days of altered sleep-wake cycle. The phase was also delayed gradually but remarkably. The daily rhythm of body temperature was changed by the alteration of sleep-wake cycle. The body temperature began to decrease at the similar clock time as in the control but the decline during night awake period was less steep and the lowered body temperature persisted during sleep. The hormonal profiles during the days of shifted sleep/wake cycle suggest that plasma melatonin and TSH rhythms are basically regulated by an endogenous biological clock. The parallel phase shift of melatonin and TSH upon the change in sleep-wake cycle suggests that a common unitary pacemaker probably regulates these two rhythms. The reversal phase relationship between body temperature and melatonin suggests that melatonin may have a hypothermic effect on body temperature. The altered body temperature rhythm suggests that the awake status during night may inhibit the circadian decrease in body temperature and that sleep sustains the lowered body temperature. It is probable but uncertain that there ave causal relationships among sleep, melatonin, TSH, and body temperature.

Computation of Wake Vortex Behavior Behind Airplanes in Close Formation Flight Using a Fourier-Spectral Method (푸리에-스펙트럴 법을 사용한 근접 편대비행 항공기의 와 거동 계산)

  • Ji, Seunghwan;Han, Cheolheui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Behaviors of wake vortices generated by an aircraft affect the performance and flight stability of flying aircraft in formation flight. In the present study, the trajectories of the wake vortices behind airplanes in close formation flight were computed using a Fourier spectral method. The behavior of wake vortices showed complex patterns depending on the initial circulation and the relative positions between the vortices. In the initial stage, the wake vortex movement was affected by the nascent vortex. When the vortex becomes closer to the other vortex, then a new trajectory is formed. When the viscous effect becomes dominant, the core radius increases. Thus, a new vortex moving near the existing vortex can have strong interaction with each other, resulting in the complicated behavior of wake vortices. In the future, the ground effect on the behavior of the wake vortices during take-off and landing will be studied.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(II)(Par II. Turbulent Characteristics of Stratified Wake) (열성층유동장에 놓인 원주후류의 특성에 대한 연구(2)(Part 2. 성층후류의 난류유동특성))

  • 김경천;정양범;강동구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1322-1329
    • /
    • 1994
  • The effect of thermal stratification on the stratified flow past a circular cylinder was examined in a wind tunnel. Turbulent intensities, the rms values of temperature and turbulent convective heat flux as well as the velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured by using a hot-wire and cold-wire combination probe. It is found that the temperature field affects as an active contaminant, so that the vertical growth of vortical structure is suppressed and the strouhal number decreases with increasing the extent of stratification. And also, the wake structure can not sustain their symmetricity about the wake centerline and vertical turbulent motion dissipates faster than that of the neutral case when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower of the wake in a stably stratified flow because the turbulent intensities and convective heat flux in the upper half section are larger than those of the lower half of the wake.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Flow structure of wake behind a finite circular cylinder (자유단이 있는 원주의 후류 유동특성에 관한 실험적 연구)

  • Lee, Sang-Jun;Jeong,Yong-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2014-2022
    • /
    • 1996
  • Flow characteristics of the wake behind a finite circular cylinder(FC) mounted on a flat plate was experimentally investigated. Three finite cylinder models having aspect ratio (length to diameter ratio, L/D) of 6,10 and 13 were tested in this study. Wake velocity was measured by a hot-wire anemometry at Reynolds number of 20,000, and the results were compared with those of two-dimensional circular cylinder. As a result, the free-end effect on the wake structure becomes more dominant with decreasing the aspect ratio(L/D) of the finite cylinder. Invisid flow entrained into the wake region decreases the turbulence intensity and periodicity of the vortex shedding due to existence of the free end. From spectral analysis and cross correlation of the velocity signals, vortices having 24Hz frequency characteristics are found in the down wash flow just behind the free end. There exists very complicated flow near the free end due to interaction between the entrained flow and streamwise vortices. Vortex formation region is destroyed significantly in the near wake and shows quite different wake structures from those of 2-D cylinder.