• Title/Summary/Keyword: Wake characteristics

Search Result 521, Processing Time 0.025 seconds

SIMULATION OF PARTICLE DISPERSION AND DEPOSITION IN FLOW AROUND TWO CIRCULAR CYLINDERS IN A SIDE-BY-SIDE ARRANGEMENT (병렬로 배열된 두 개의 원형 실린더 유동에서 입자의 분산과 부착 해석)

  • Hwang, Dongjun;Kim, Dongjoo
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.81-89
    • /
    • 2016
  • Numerical simulations are carried out for the fluid flow and particle transport around two nearby circular cylinders in a side-by-side arrangement. The present study aims to understand the effects of the particle Stokes number and the spacing between two cylinders on particle dispersion and deposition characteristics. Simulations are based on an Eulerian-Lagrangian approach where the motion of particles is calculated by a Lagrangian approach based on one-way coupling. Results show that the flow structure is very different depending on the cylinder spacing, eventually affecting the overall pattern of particle dispersion significantly. It is also found that particles with smaller Stokes number tend to be distributed more uniformly in the wake of two cylinders, being located even inside the vortex cores. Meanwhile, particle deposition is analyzed in terms of the deposition efficiency and deposition location. The deposition efficiency of particles strongly depends on the Stokes number, whereas it is slightly affected by the cylinder spacing. The deposition location gets wider as the Stokes number increases, and it becomes asymmetric about the center of each cylinder as the cylinders get close.

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

The Characteristic Investigation of the Flowfield around Two Circular Cylinders in the Tandem Arrangement Using the PIV (PIV를 이용한 직렬배열에서 2원주 주위의 유동장 특성 연구)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Park, Ji-Tae;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2007
  • The Characteristics of the flowfield around two circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers. velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D= 1.5. 2.0 and 2.5, and Reynolds number of $Re=3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of the cylinder of wake side were decreased with the space ratios. The flow between two cylinders was almost stagnated and the size of the stagnated region was larger in the close side than in the far side of the front cylinder. The direction of vortex between two cylinders was opposed each other with the small difference(${\alpha}\;{\pm}1.0^{\circ}$) of the attack angle ${\alpha}$.

A Study on Velocity Distribution Around Ship Stern by Improved Power Law Flow Model (멱법칙 유동모델의 개선에 의한 선미 유동장내 속도분포 연구)

  • 김시영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1391-1397
    • /
    • 1992
  • Improved power law flow model was suggested for the calculation of wake flow characteristics around the three dimensional ship stern in case of the formation of bilge vortex in the direction of stern. In comparison with the power law and Coles flow model, the flow velocity calculated based on this study was delayed around the boundary of inner layer and outer layer in reverse flow. More accurate results was obtained with this improved power law flow model by the velocity calculation around ship stern. Accuracy was validated with the comparison of other calculation results and experimental datas.

The Characteristic Investigation of the Flowfield around Two Circular Cylinders in Various Arrangements Using the PIV (PIV를 이용한 다양한 배열에서 2원주 주위의 유동장 특성 연구)

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The characteristics of the flowfields around two circular cylinders in various arrangements were investigated by PIV. In tandem arrangement, the Strouhal numbers measured in the rear region of the cylinder of wake side were decreased with the space ratios, the flow between two cylinders was almost stagnated and the closer to upstream cylinder, the larger the width of the stagnated region was. The direction of vortex between two cylinders was opposed each other with the small difference(${\alpha}$=${\pm}1.0^{\circ}$) of the attack angle . In side by side arrangement, the flow velocity between two circular cylinders were increased with the space ratios.

Numerical Analysis of the Flow Field around Artificial Reefs (인공어초 주변의 흐름장에 관한 수치해석)

  • Jeong, Chil-Hoon;Kim, Heon-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • This study investigated the fluid force acting on an artificial reef and the scour pattern at the bottom of the artificial reef in a steady-flow field using the finite difference method (Flow-3D). The structure was tetragonal in shape, like similar objects found in nature. The numerical analysis showed that the hydrodynamic characteristics and incipient scouring pattern matched natural phenomena. The velocity distribution around the tetragon was symmetric and wake occurred inside the tetragon and behind the bottom of the tetragon. The length of the recirculation flow behind the tetragon for each velocity was about 4-5 cm and the magnitude of the recirculation flow inside the tetragon generally increased with the Reynolds' number, although it decreased slightly for Reynolds' numbers from 11,000 to 12,000. In addition, the total fluid force acting on the tetragon increased with the inflow velocity, although the increment was smaller when the velocity exceed 18 cm/sec. The incipient pattern for the scouring of sediment matched the natural phenomenon.

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan (축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용)

  • Chung, Dong-Gyu;Hong, Soon-Seong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF